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ABSTRACT

The human body’s sensory processing system is capable of gathering and integrat-
ing information via sensory organs. Children with autism spectrum disorder(ASD)
have been found to have a sensory impairment. Individuals with ASD are prone to
hyper/hyposensitivity, which might cause changes in information management, and
affect cognitive impairment and social reactions to everyday events. This report pro-
posed a two-stage strategy consisting of a questionnaire-based classification of ASD
and a multimodal screening method for ASD screening that incorporates all pos-
sible input factors such as facial imaging, eye tracking, motor movement analysis,
behavioral analysis, heart rate, and audio data. In the first stage, a questionnaire
is designed, based on ASD symptoms found in previous studies with 82 questions.
Then, a dataset is built by the use of the questionnaire and performing a survey.
Following that, video and audio data from ASD patients are captured, as well as
physiological data from ASD patients via a smartwatch (Fitbit) for screening and
monitoring purposes. The final dataset is constructed by extracting the relevant mul-
timodal features. Finally, different machine learning classifiers for type detection and
screening are constructed and compared to different architectures as well as single
modality classifiers. The proposed multimodal neural network with selective dropout
attained a testing accuracy of 99.98 percent.

Keywords: Autism Spectrum Disorder, Machine Learning, Neural Network Clas-
sifiers, Multimodal Classification, Questionnaire, Multimodal Data.
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CHAPTER I

Introduction

1.1 Overview

In this section, we have discussed the impact of Autism Spectrum Disorder (ASD)
on global health and the lives of patients and their families. In the following sections,
we have explained what ASD is and how it differs from other neurological conditions.
ASD must be detected early in a patient’s life because there is no accurate lab test for
its detection. Finally, we have outlined the shortcomings in existing research. Finally,
we have discussed sensing and IoT technology in the detection of ASD, machine
learning (ML) detection, multimodal ASD screening, and an autism health monitoring
system.

1.2 Background

1.2.1 Effect of ASD in Global Health

According to the Centers for Disease Control (CDC) and Prevention of the USA,
17 % of children aged three to seventeen were diagnosed with a developmental disabil-
ity between 2009 and 2017 [1]. ASD is a group of complicated development in social
contact, speech, and non-verbal expression, and restricted/repetitive behavior that
entails ongoing difficulties [2]. The constellation of both communication and physi-
cal rigidity impairments with genetic complications are early manifestations of ASD.
According to Lord et al. [3]. Two deficiencies characterize ASD: 1) social and com-
munication, 2) highly restricted and repetitive pattern of sensing - motor behavior.
In each person, the causes of ASD and the seriousness of the symptoms vary. ASD
has been diagnosed in every 1 in 270 people in the world [4]. In the United States
alone, 1 out of every 54 children has been diagnosed with ASD. Hence, early detec-
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tion of ASD creates awareness both in the family and socially, enables better care and
less negligence for diagnosed individuals, and results in overall better psychological
growth.

1.2.2 ASD and Its Type

The ASD is a complicated, irreversible developmental disorder that typically mani-
fests in early childhood and has a detrimental effect on an individual’s overall abilities,
self-control relationships, and communication. ASD is a neurodegenerative disease de-
fined by occurrence of repetitive and restricted activities, behavior, or interests and
impairments in social communication, as per the fifth edition of the diagnostic and
statistical manual of mental disorders [2]. Deficits in nonverbal communication for so-
cial interaction, social-emotional reciprocity, relationship development, maintenance,
and comprehension are the primary indicators of impairments in social communica-
tion. Multiple symptoms are indicative of restricted and repetitive patterns of activ-
ities, interests, or behavior. These symptoms include rigid adherence to schedules,
insisted sameness, repetitive motor or body movements, ritualistic behavior, hyper or
hypoactivity, unusual interest in sensory aspects of the environment, and an uncertain
response to sensory inputs. A great deal of study has been done on ASD, its vari-
eties, symptoms, and identification. Faras et al [5] has classified autism as a Pervasive
Developmental Disorder (PDD) and categorized ASD as Autistic Disorders (AD), As-
perger’s Syndrome (AS), Pervasive Developmental Disorder-Not Otherwise Specified
(PDD-NOS), Childhood Disintegrative Disorder (CDD), and Rett Syndrome (RS).

1.2.3 The Necessity of Early Intervention

Toddlers who got early intensive therapy not only had functional gains but also
required fewer services than those who received "treatment as usual" in a two to
three-year follow-up of a clinical study, resulting in overall cost savings [6]. As a re-
sult, early intervention—and, by implication, early diagnosis—have the potential to
enhance function while lowering societal costs [7]. Early diagnosis as well as treatment
for children with impairments have been found to enhance child outcomes for AD [8]
and for autism. Developmental surveillance which is also known as developmental
monitoring by the American Academy of Pediatrics. It is promoted by the World
Health Organization [9] as a procedure for the early diagnosis of developmental dis-
abilities, particularly in low middle-income countries. Structured screening for AD or
neurodevelopmental problems, as part of a progressive perspective to diagnosis and
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treatment, is one of the proposed techniques for monitoring children’s development
[10]. In comparison to relying solely on clinical judgments, information from high
income countries suggests that providing screening instruments during regular health
care examinations may yield to a more fast and effective assessment of children in
need [11]. Regular screening for autism or DD at health-care visits is a simple and
effective way to detect the condition early, while also allowing for referral for addi-
tional diagnosis and intervention if necessary. Despite its significance, however, early
diagnosis remains a hurdle in both high and low middle-income countries [12]. Early
in life, when developmental changes are fast, domains overlap, and early symptoms
are typically modest, identification is difficult [13].

1.2.4 Deficits in Traditional Medical Approaches

Even though there may be few visible physical impairments, people with ASD
suffer from significant psychological sickness. Since there are no physical attributes
quantifiable in lab tests, ASD diagnosis has been quite difficult until now. Impairment
among individuals varies for different ages; children are more prone to the intellectual
disability with inferior motor control, whereas adult patients suffer from atypical, se-
lective, and repetitive interaction in case of communication. Thorough development
history of the child is normally gathered through parents; and recent behavior of the
child as well as monitoring of the child in conjunction with group and unfamiliar
people, are two crucial components of the children’s ASD screen procedure. On the
other hand, ASD screening of adults primarily relies on the behavioral pattern of
development from childhood, screening tests, and questionnaires [3]. Doctors analyze
communication, social, and behavioral development data to make a decision. Since
people with ASD who come in for an autism evaluation are more likely to have co-
incided mental health difficulties, any mental health evaluation technique must be
able to identify such symptom and behavior irregularities from autism-related ab-
normalities; thus creating anomalies and ASD screening results. The Diagnostic and
Statistical Manual of Mental Disorders (DSM 5) [2] and Autism Diagnostic Observa-
tion Schedule (ADOS) [14], the two most often used manuals, have made a difference
in detecting ASD. DSM-5 defined two key domains of ASD to assess impairment: (i)
communication and social interaction, and (ii) restricted interests and repetitive be-
haviors. On the other hand, ADOS evaluation utilizes planned social circumstances
to generate target responses and interpersonal interactions divided into four modules.
These modules are suited to people depending on their language and stage of devel-
opment to guarantee that a varied range of behavioral events is covered. Nonetheless,
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the psychometric features of each method are restricted, dependent on outdated di-
agnostic standards, various behaviors, restrictions on present operation, and age.

1.2.5 Sensing and IoT Technology in ASD Detection

Various sensing technology embedded with wearable devices, such as microphones,
heart rate, motion, accelerometer, and pulse oximeter, provide much better insight
into the ailments and symptoms of a patient. Similarly, video, simulation, eye track-
ing, and virtual reality-based scenarios contribute to the accurate assessment of ASD
diagnosis rather than questionnaire-based one [15]. These devices can collect critical
information about patients and then employ various ML and DL algorithms to deter-
mine suitable responses. Preliminary detection of ASD based on IoT devices might
perhaps assist professionals. Moreover, IoT and ML systems allow for mass primary
diagnosis with little or no health professional involvement.

1.2.6 Effect of ML in Neurological Diseases

Complex characteristics and symptoms of developmental and cognitive disorders
add complications to classifying in clinical decision making as well as deterministic
computational methods. ML algorithms have been utilized broadly to solve devel-
opmental disorders, specifically ASD. Hyde et al. [16] addressed the effectiveness of
utilizing ML for autism identification and reviewed several detection methods. These
methods include the detection of behavioral and neuroimaging data, behavioral and
developmental data, genetic data, and electronic health records. Reviewed methods
include classifiers like Support Vector Machine (SVM), Decision Tree (DT), Alternat-
ing Decision Tree (AD Tree), Neural Networks (NN), Bayesian Network (BN) Random
Forest (RF), Logistic Regression (LR), Random Tree (RT), Naive Bayes (NB) and
more.

ASD diagnosis is a difficult procedure due to the disorder’s developmental and
widespread character. Numerous signs of ASD, including as delayed expressive com-
municative competence, poor interpersonal responsiveness, behavioral issues, and
repetitive/restricted behavior, are also present in other diseases and syndromes. In-
tellectual handicap hinders the different diagnosis even more, particularly in children,
whose interpersonal interaction impairments produced by severe cognitive impairment
must be separated from those caused by ASD. A variety of official and informal autism
screening techniques are used by professionals. These might be anything from casual
observations to official evaluations. The M-CHAT (Modified Checklist for Autism in
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Children) is a common 20-question assessment designed for toddlers aged between
sixteen to thirty months [17]. The Ages and Stages Questionnaire [18] is a broad
developmental screening method that focuses on developmental issues at distinctive
ages. The ASQ consists of 40 questions on reciprocal social interaction (such as
willingness to participate with other children, trying to offer comfort to others, and
social smiling), language and communication (consisting interpersonal conversation,
the use of traditional gestures, and generalizing utterances), and stereotyped or repet-
itive behavioral schemes. The ASQ also contains a question concerning self-injurious
conduct and another about the individual’s present language functioning [18]. ADOS
is a series of semi-structured observation based questions in which examiner assesses
the child’s answers to a variety of familiar and unusual circumstances, looking for
ASD-related behaviors. ADOS consists of several subtasks whose goal is to assess
social capabilities, such as eye contact and social smiling [14]. The ADI-R is a simi-
lar questionnaire for caregivers ot family members to diagnose ASD by interpreting
their observations about their children’s everyday activities.[19] Because the ADI-R
assessment is dependent on these reports, it does not allow for direct observation of
children’s social behaviors. Instead of relying solely on psychoanalysis or other the-
oretical assumptions, CARS is based on direct behavioral observation. The CARS
is particularly helpful for research and administrative classification, as well as for
generating a comprehensive explanation of a child’s unusual behavior [20].

1.2.7 Multimodal ASD Screening and Type Detection

Though individual screening systems like questionnaires, eye tracking, neuroimag-
ing, genetic data, electronic health records provide adequate results, the combination
of these methods yields greater accuracy. A multimodal screening system consists of
each screening as mentioned earlier methods, then summarizes each prediction into a
final prediction. Multiple ML classifiers run parallelly with a final classifier that takes
each of the first stage classifiers as input. In this manner, several ASD symptoms can
be analyzed for diagnosis [21].

1.2.8 Health Monitoring System for ASD

People, particularly ASD patients, confront a variety of emotional situations in
their daily lives, which in terms affect the physiological growth of individuals. All
aspects of these physiological and psychological activities are hard to be cataloged by
health professionals. Hence, a physiological outcome monitoring system that records
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continuous communication and behavioral changes produce intuition of the patient’s
well-being. Again these systems assess health professionals to monitor the growth
in different contexts. Heart Rate Reactivity (HRR), Heart Rate Variability (HRV),
Respiration Rate (RR), blood volume pulse, oxygen saturation, body temperature,
electrodermal signals of skin, blood pressure, and many more autonomous sensors can
create a ubiquitous environment around the ASD patient and provides insights about
their daily lifestyles and emotions [22]. Merging the cloud, IoT, and ML technology,
these insights allow for autonomous emergency notification to health professionals and
caregivers. The following are some popular techniques for controlling and monitoring
ASD systems: at the outset, ASD symptoms must be discovered, which may be done
in a variety of ways, such as utilizing questionnaires to identify the most prevalent
ASD signals. Once this step is complete, we may use IOT-based devices that use
different sensor motors or wearable devices to track an individual’s everyday actions.
We can monitor an individual’s behavior and how he or she responds to diverse
circumstances by deploying these technologies. We can develop a system to monitor
or ease their behavioral cycle after we’ve identified it, and we can utilize a variety of
apps or web-based platforms to do it. Thus, we can train them and improve their
lives by providing diverse approaches, equipment, and other resources.

1.3 Motivation

40% of individuals with ASD are nonverbal, and 31% of children are intellectually
disabled. Medical approaches necessitated the involvement of an expert specialist and
a significant amount of time. Thus, early intervention is critical for detecting ASD,
and ongoing monitoring will considerably improve a child’s quality of life. Tradi-
tional approaches require an individual to provide uni-type data, which complicates
the procedure. Additionally, the overwhelming majority of datasets are based on
questionnaires, which may not adequately represent ASD individuals’ subconscious
behavior and social inadequacies. As a result of a scarcity of training data, only a
few deep learning (DL) algorithms have been deployed. Thus, we aim to acquire
multimodal data from an individual, implement it using a multimodal model, and
compare it to a unimodal model.
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1.4 Problem Statement

ASD is a pervasive developmental impairment characterized by persistent difficul-
ties with speech and nonverbal communication, social interaction, as well as restricted
behaviours. Each person has very distinctive set of impacts and disabilities. Again
the severity of symptoms vary by individual. And in some cases, individuals are not
diagnosed before they reach the age of adolescence or adulthood. This delay results
in children with ASD not receiving the necessary early intervention. Thus, early
detection of ASD allows more efficient intervention.

1.5 Objective and Contribution

1.5.1 Objective

The objective of this research is following:

• To create questionnaire and multimodal data collection strategy

• To collect ASD dataset using questionnaire and multimodality

• To design ML classifiers and multimodal neural networks for ASD classification.

• To evaluate ML classifiers for ASD classification and multimodal neural net-
works for screening.

• To compare Classifiers for screening and type detection.

1.5.2 Contributions

Our contributions in this research are given below :

• Accumulated all possible symptoms related to ASD found in the current litera-
ture, and prepared a questionnaire to screen ASD and type detection using ML
from 82 selected questions;

• Listed the most salient signs that distinguish ASD children from non-ASD chil-
dren;

• Prepared a multimodal dataset with eye scan path, face, behaviour, activity,
audio data. A video camera is used to collect eye scan path, facial image and
behaviour where as a Wearable device (Fitbit) is used to collect activity, heart
rate, calories consumed, metabolic equivalent of task etc.
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• Designing a multimodal Neural network that encompasses all factors in the
screening;

• On the created dataset, we have evaluated and compared the performance of
various multimodal classifiers.

1.6 Research Outline

The remainder of the report is structured as follows: The second section reviews
the literature; the third section discusses the proposed methodology,the fourth section
contains the experimental analysis and finally, section 5 contains the conclusion
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CHAPTER II

Literature Review

2.1 Overview

A brief explanation of the ASD symptoms has been provided in this part, which
follows a review of relevant medical studies. Our next topic was a discussion of ASD
detection datasets currently available. In the next section, we looked at how ML may
be used to identify (ASD) by utilizing Questionnaires, Physiological and Video Data,
and Multimodal Data. Finally, we discussed the monitoring system and the software
that can be used to diagnose autism spectrum conditions.

2.2 ASD Symptoms

Ample research has been conducted related to ASD, its types, symptoms, and
detection. Faras et al. [5] classified autism as a Pervasive Developmental Disor-
der (PDD) and categorized ASD as Autistic Disorders (AD), Asperger’s Syndrome
(AS), Childhood Disintegrative Disorder (CDD), Pervasive Developmental Disorder-
Not Otherwise Specified (PDD-NOS) and Rett Syndrome (RS). Biomarkers related to
cognitive, behavioral, visual, and structural connectivity have demonstrated promise
in several clinical screening and diagnostic procedures, like ADOS, DSM-5, Autism
Diagnostic Interview-Revised (ADI-R), Developmental, Dimensional and Diagnostic
Interview (3di), Social Responsiveness Scale (SRS, SRS-2) [23]. Clinical standards,
however, usually require the involvement of multidisciplinary teams in ASD diagnosis,
and these processes need substantial amounts of time. Seltzer et al. [24] discovered
that patients with ASD show a tendency to query inappropriately, spontaneously im-
itate, lack interest in people, difficulty sharing meals, and repetitive use of objects.
Faras et al.[5] explored red flags indicating ASD in participants and described delays
in speaking, repetitive play with toys, and communication difficulties. In addition,
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Figure 2.1: Different types of ASD and their symptoms. The black color indicates
common ASD symptoms exists in all subtypes. Different colors indicate the corre-
sponding symptoms found in different subtypes.

there was a lack of facial expression, pretend play, imagination, interest in playing
near peers on purpose, ability to comprehend sarcasm, and awareness of personal
space. Dawson et al. [25] discovered substantial disparities in task assessment per-
formance between children with autism and those who did not have the condition.
The symptoms included were social orienting, symbolic play, shared attention, dis-
tress responses, and immediate and delayed imitation. Taylor et al. [26] investigated
sleep issues related to ASD. Solomon et al. [27] conducted a study comparing autism
and internalizing symptoms in boys and girls with ASD. They discovered no differ-
ences in ASD symptoms, but found that females with ASD had greater internalizing
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symptoms than males with ASD. Volkmar et al. [28] developed a questionnaire to as-
sess autistic and non-autistic individuals. They evaluated the variation score for five
symptom areas: social/self-help, sensory, body/object use, language, and relating.

2.2.1 Asperger’s Symptoms

According to Baskin et al.[29], individuals with AS manifest an inflexible adher-
ence to specific nonfunctional routines, schizophrenia, repetitive and stereotyped mo-
tor mannerisms, and limited fields of interest. People with AS engage with others who
share similar interests, struggle to maintain and develop good peer relationships, and
prefer social isolation. In contrast, children have trouble starting to play with their
peers due to a lack of social skills, according to Mirkovic et al.[30]. As a result, indi-
viduals choose to engage in activities that require less interaction. Their motions are
clunky and erratic. They often have dyspraxia, a motor coordination disorder. Some
people may be hypersensitive. On the other hand, they are pretty adept at memo-
rizing and frequently have interests in mathematics, meteorology, music, dinosaurs,
card collecting, and so on. A structured interview with the parents of these children
was carried out by Eisenmajer et al. [31] to compare AD and Asperger’s disorder.
In addition, children with AS have been discovered to avoid eye contact, have less
willingness to become friends, and participate in long-running pedantic speech pat-
terns and repeated question talks. Machintosh et al.[32] reviewed current published
literature and discovered that people with AS are more likely to have hyperactivity
disorder, emotional and behavioral disturbances in childhood

2.2.2 PDD-NOS Symptoms

Karabekiroglu et al.[33] researched PDD-NOS symptoms and discovered that the
participants exhibit unusual nonverbal movement, lack of eye contact while interact-
ing hyperactivity and hostility, and inappropriate laughter. Initially, they created
some preliminary symptom screening scale items: poor social interaction, hyperac-
tivity, aggressiveness, obsessions, impulsiveness, echolalia, stubbornness, language
retardation, choosiness, prosody problems, confusing pronouns, and highly interested
televisions, etc. Later found that inattentiveness, hyperactivity, poor social skill, not
responsiveness were the significantly discriminative symptoms. Snow et al.[34] iden-
tified a concern with rule-breaking and aggressive conduct, as well as anxiety and
depression among PDD-NOS patients. Jensen et al.[35] investigated PIC (Personal-
ity Inventory for Children) components to assess PDD-NOS symptoms. Undiscipline,
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cognitive development, internalizing symptoms, and social inadequacy were the fac-
tors. They also discovered that the people suffer psychosis, delinquency, and a high
frequency of odd symptoms. The distinctions between PDD and related disorders
were investigated, and categorization systems were developed by Buitelaar et al.[36].
For example, they demonstrated a lack of social or emotional reciprocity, incorrect
communication language, uncomfortable discussion, a lack of shared enjoyment, a
lack of nonverbal behavior, and so on in patients with PDD-NOS symptoms.

2.2.3 CDD Symptoms

Mehra et al. [37] examined symptoms of CDD and discovered that the partici-
pants exhibited limited interest, lack of imagination, sleep problems and decreased
motor abilities. Aggression, agitation, and self-injurious behavior are all common in
CDD. Case reports for CDD indicate at least two years of seemingly normal growth,
with all developmental milestones met. However, CDD has been linked to difficulties
with adaptive skills including toileting, self-help, and sleep, as well as emotional and
behavioral management. In addition, regression in CDD has been reported as being
fast and abrupt. The communication disruption, according to Malhotra et al malho-
tra1999, is the most noticeable. The loss of speech is often so severe that it resembles
the extreme lack of speech development found in autism. Social and self-help abilities
are deteriorating at a greater rate than motor skills.

2.2.4 AD Symptoms

Elia et al.[38] observed that the diagnosis of AD can be based on the first REM
delay, muscle twitches density and rapid eye movement density. They found that
muscle cramps were significantly higher in patients with AD. In addition, they ob-
served patients with AD, patients with fragile X syndrome with mental retardation,
and normal subjects. Patients’ first REM delay, sleep latency, bedtime, stage tran-
sitions, and awake following sleep initiation were all substantially associated. They
suspected that people with AD and X syndrome with mental impairment had a neu-
rophysiological sleep pattern. And also, these patterns could be correlated with other
psychological parameters which were used to diagnose AD. Repetitive behaviors may
not be major characteristics of AD; nevertheless, Militerni et al. [39] discovered that
younger subjects demonstrated repetitive motor and sensory behaviors, whereas older
youngsters with higher IQ scores demonstrated complex repetitive behaviors. Eisen-
majer et al.[31] examined patients’ parents and discovered that children with AD
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were less likely to participate in prosocial activities than kids with AS. Eye contact
avoidance was more acute in children with AD than in children with AS. Children
with AD were more likely to utilize echolalic speech and less likely to employ pedantic
speech patterns and repeated question discussions.

2.2.5 Rett Syndrome Symptoms

Hagberg et al. [40] identified the essential clinical symptoms of RTT and classified
it into five categories. At six months to 2 years, the subjects’ attained talents tend to
fade: hand skill, hand use, communication, inner language, emotional interaction, and
so on. Hand movements that are unusual include hand-washing, wringing, clapping,
and other expressions such as teeth grinding and body rocking. Rapid deterioration
may occur after this stage. The individual is between the ages of 1-3 years throughout
this time period. Severe dementia, rapid social regression, apraxia, and seizures can
be observed in 75-80 percent of patients. The last stage may include motor handicap,
such as being confined to a wheelchair or bed, severe scoliosis, growth retardation, and
so on. RTT, according to Kyle et al.[41], is a neurological condition caused by genetic
abnormalities. The RTT was classified into four stages: stagnation, rapid regression,
pseudo stationery, and motor degeneration. Developmental progress is slowed during
the stagnation stage, which includes crawling, sitting, vocalization, and so on. Pos-
tural delays appear, and microcephaly (head shrinkage) occurs. Breathing problems,
severe microcephaly, and the possibility of seizures are all frequent during the rapid
regression stage. Seizures are more likely in the third stage, and the individual may
show more interest in others, as well as hand apraxia/dyspraxia. Physical difficul-
ties deteriorate in the final stage, scoliosis is discovered, and wheelchair dependency
may ensue. RTT is related to severe mental impairment, cortical atrophy, stereotyped
hand movements, and extrapyramidal dysfunction, according to Wenk[42]. According
to Wulffaert [43], RTT patients have a short attention span, make nonspeech noises,
and laugh for no apparent reason. Nomura et al.[44] discovered that the participants’
intellectual ability is substantially impacted from childhood to adulthood.

2.3 ASD Dataset

To analyze biomarkers and traits among ASD and neurotypical people, many
researchers have conducted studies among different modalities. Through suitable
processes, a lot of surveys have been conducted to acquire data from different peo-
ple in order to find differences in biomarkers between ASD, neurodegenerative and
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Name Size Input format
Detect Autism from a facial image 2536 Train, 200 test,

100 validation
Image

Autism Screening 704 data, 21 field Structure Data
Autism Detection Based on Eye
Movement Sequences on the Web:
A Scanpath Trend Analysis Ap-
proach

- Structure Data

Autism screening data for toddlers 1054 data Structure Data
Visualization of Eye-Tracking Scan-
paths in Autism Spectrum Disor-
der: Image Dataset

- Image

Autistic Spectrum Disorder Screen-
ing Data for Children Data Set

292 instances, 21 at-
tributes

Structure Data

A Dataset of Eye Movements for
the Children with Autism Spec-
trum Disorder

300 images Image

A set of video clips of reach-to-grasp
action Request Needed

1837 video sequences Video

Identification of common genetic
risk variants for autism spectrum
disorder

18,381 individuals
with ASD and 27,969
controls

Genetic

Meta-analysis of GWAS of over
16,000 individual

Meta-analysis of
GWAS of over 16,000
individual

Genetic

Table 2.1: Available dataset details
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https://www.kaggle.com/gpiosenka/autistic-children-data-set-traintestvalidate
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https://pavis.iit.it/datasets/autism-spectrum-disorder-detection-dataset
https://pubmed.ncbi.nlm.nih.gov/30804558/
https://pubmed.ncbi.nlm.nih.gov/30804558/
https://pubmed.ncbi.nlm.nih.gov/30804558/
https://pubmed.ncbi.nlm.nih.gov/28540026/
https://pubmed.ncbi.nlm.nih.gov/28540026/


neurotypical patients. By labeling these features manually each of the datasets pro-
vides future research scope for researchers of different backgrounds. Since making
a dataset is a tedious task, requiring multidisciplinary contribution, a handful of
datasets is publicly available. The modalities of data range from structured data to
image, audio, and video data. A total of 20 features(10 behavioral features, and ten
individual characteristics) are utilized to classify ASD cases in this dataset[45]. A
further innovative way to ASD detection using the Scanpath Trend Analysis is the
use of an individual eye move from the web[46]. Another dataset featuring displays
of eye-tracking scan paths focusing on ASD is here[47]. By employing a mobile app
called ASDTests, another structured dataset was built to test autism in toddlers[48].
300 images of 14 individuals diagnosed with ASD and 14 normal individuals is given
here[49]. Another dataset, consisting of video clips of children with ASD performing
reach-to-grasp activities, is proposed here[50]

2.4 ASD Detection Using ML

2.4.1 Questionnaire

Goal et al. proposed [51] proposed a modified Grasshopper Optimization Al-
gorithm (GOA) for feature selection in AQ10 questionnaire-based data set, which
improved the classification accuracy of RF, LR, NB, and KNN and achieved 100 per-
cent accuracy for child and adolescence dataset. Thabtah and Peebles [52] suggested
new Rule-based machine learning(RML) for detecting ASD On several ASD datasets
while bagging, boosting, rule induction, and decision trees methods were empirically
assessed, with RML outperforming the others. Kupper et al [53] prepared an ADOS
questionnaire with a survey conducted in Germany and minimized the feature of
ADOS into only five attributes. Then classification has been applied using SVM with
an AUC of 82 percent.levi et al [54] proposed sparsity to build regulation techniques
to pick features of the ADOS questionnaire, utilizing 17 different supervised learning
models and to encode missing data for a grid search styled cross-validation. They
had incorporated feature sets along with sex and age to offer a simple classifier that
may be developed to differentiate ASD from non-ASD reliably. The ML technique in-
cludes LR, Lasso, SVM, ADTree, RF, Ridge, Elastic net, Nearest shrunken centroids,
LDA, AdaBoost, Relaxed Lasso, and others. In another work, Pratama et al. [55]
applied SVM, RF, ANN into the AQ-10 dataset with 10 fold cross-validation, though
no feature selection has been used.
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Table 2.2: Review of recent literature

Author Methodology ML Model Data
Type

Dataset
Size

Evaluat
-ion
matric

Limitation Year

Carette
[56]

An automated technique
using on LSTM neural nets
that focuses on the saccade
portion of eye during read-
ing

LSTM Eye
Trackng

ASD
17,Non
15

Accuracy
83%

Exclusion
of Com-
parison
with
other NN

2017

Carette
[57]

Using color gradients, co-
hesively represent eye mo-
tions into an image-based
manner while preserving
the dynamic features of eye
movement

RF,SVM, LR,
NB, ANN

Eye
Trackng

ASD
29,Non
30

AUC
90%

NA 2019

Elbattah
[58]

a eye tracking scanpath
method for ASD classifi-
cation using K-mean clus-
tering algorithm,and find
maximum accuracy with
the k value set at four,

Grayscale
,PCA ,t-
SNE,Autoencoder
Features, K-
Means Cluster-
ing

Eye
Trackng

ASD
29,Non
30

Accuracy
94%

NA 2019

Tao
[59]

eye scan path by saliency
mapping from CNN gener-
ator and discriminator part
with encoder, decoder uti-
lizing a CNN-LSTM algo-
rithm for classification.

SalGAN, CNN-
LSTM

Eye
Trackng

ASD
14,Non
14

Accuracy
74.22%

NA 2019

Goel
[51]

Optimization algorithm
GOA for accelarating ML
algorithm

GOA, , LR,
NB, KNN, RF-
CART- ID3,
BACO

AQ-10,
Question-
naire

1100 Accuracy
of near
100%

Low con-
vegence
speed for
GOA

2020

Thabtah
[52]and
Peebles

On several ASD datasets,
bagging, rule induction,
boosting, and decision trees
methods were empirically
assessed, with RML outper-
forming the others.

RIDOR, Nnge,
RIPPER,
RML, Bagging,
CART, PRISM
, C4.5

AQ-10,
Q-CHAT,
Question-
naire

ASD
189 ,
Non
ASD
515

F1
Score
more
than
90%

Not ap-
plied
to any
toddlar
dataset

2020

Kupper
[53]

ADOS questionnaire based
data, minimizing features
into only five attributes,
classification using SVM

recursive fea-
ture selection,
kohen cappa,
SVM

ADOS,
Question-
naire

ASD
385,
Non
ASD
288

AUC of
82%

Affect of
diffrent
ML algo-
rthim in
selected
feature is
known

2020

Levy
[54]

Collected seperate data for
child and adult, applied 17
supervised machine learn-
ing algorithm , 10 feu-
ture from ADOS and SVM,
LDA gained most AUC

LR, Lasso,
SVM, ADTree,
RF, Ridge,
Elastic net,
Nearest
shrunken cen-
troids, LDA,
AdaBoost, Re-
laxed Lasso

ADOS,
Question-
naire

AUC of
95%

Impure
source
and sur-
vey of
data

2017

Pratama
[55]

SVM, RF, ANN applied
into AQ-10 datset with 10
fold cross validation

SVM, RF,
ANN

AQ-10,
Question-
naire

4189
ASD

Sensitivity
of
87.89%

absence
of feature
selection

2019
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2.4.2 Eye-tracking

Carette et al [56] proposed an eye movement tracking autism screening system
using LSTM. A total of 17 ASD and 15 neurotypical patients were studied in this
article with an accuracy of 83 percent. Elbattah et al. [58] suggested an eye-tracking
scan path method for ASD classification using the K-mean clustering algorithm, and
finding maximum accuracy with the k value set at four. Similarly, Carette et al.
[57] presented a similar methodology that converts eye-tracking scan path into an
image then classifies the image for ASD screening. They experimented with RF,
SVM, LR, NB, ANN algorithms with a maximum AUC of 90 percent. Tao et al. [59]
classified ASD utilizing eye scan path by saliency mapping from CNN generator and
discriminator part with encoder, decoder. An image has been given to the patient to
capture their eye scan path then utilizing a CNN-LSTM algorithm for classification.
Tegmark et al. [60] reviewed 38 eye-tracking and eye scan path-based ASD detection
methods. They consider eight factors to measure the effectiveness of each method.

2.4.3 EEG

ASD detection can be done from brain activity also. Lih Oh et al [61]. proposed
EEG based features that were selected via Marginal Fisher Analysis and Student’s t
test. Using SVM classifiers 37 children were classified with 98 percent accuracy. Sim-
ilar EEG-based classification using transfer learning pre-trained models is utilized by
bygin et al. [62]. For feature extraction, local binary pattern and short-term Fourier
transform is used to create image formats from EEG. Elizondo et al [63] has done a
case study of an ASD patient using EEG signals which basically measures attention.
The EEG data was collected when the ASD user engaged in several didactic learning
tasks in this case study. The recommended data acquisition for their case study was to
first put a headset on the participants, then start EEG tracking and video recording,
then give the test subject a worksheet and instructions, and lastly record the entire
process until the activity is complete. They discovered that band PSD parameters
such Relative Beta Power (RBP), Theta–Beta Ratio (TBR), Relative Theta Power
(RTP), Theta–Alpha Ratio (TAR), Relative Alpha Power (RAP), and the TBAR
are helpful for attention categorization. The multi-layer perceptron neural network
model (MLP-NN) had the greatest performance with these characteristics.Tawhid et
al [64] proposed a system where, primarily, Re-referencing, filtering, and normaliz-
ing are used to pre-process the raw EEG data. The pre-processed signals are then
transformed into two-dimensional spectrogram pictures using the Short-Time Fourier
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Transform. The pictures are then analyzed using ML and DL models. Textural fea-
tures are recovered and distinguished using PCA before being given to six different
ML classifiers. DL tests three different convolutional neural network models. For
this, Grossi et al employed a seldom used system called TWIST (Training with Input
Selection and Testing), a recursive hybrid ML technique that integrates an evolution-
ary optimization technique Gen-D with a backpropagation neural network. TWIST
iterations selected a trustworthy set of characteristics for ML classifier input. A clas-
sification strategy for discovering and prioritizing the most valuable parameters to
feed the predictive model, is essential for the proper deployment of the ML system,
they claim. Their findings reveal that two EEG channels, C3 and C4, provide enough
information to allow powerful ML algorithms to detect ASD signatures.

2.4.4 Facial Imaging Based

On the basis of a unique ASD dataset of clinically diagnosed children, Lu et al
[65]developed a feasible ASD screening method based on face photographs. They
claim that the ASD Children Facial Image Dataset is the only one that is publicly
available. They were all sourced via online searches of ASD Facebook groups and other
sources, according to the Kaggle dataset’s creator. Because of this, there is a concern
about the picture quality in the dataset. Accuracy is critical in the categorization of
ASD face pictures using DL. The Kaggle dataset contains 89 percent white children
and 11 percent children of color. They also clarify why the racial mix in the Kaggle
dataset is problematic. They just used the Kaggle dataset to show the consequences
of the decision. The Elim Autism Rehabilitation Center’s clinically diagnosed ASD
children’s images were used to train their algorithm to accurately identify ASD, which
fills a gap in the field.

2.4.5 Neuroimaging Based

Both Eslami et al and Heinsfeld et al used the ABIDE dataset. It comprises
morphological and anatomical brain imaging data from around the world to help re-
searchers better understand autism’s neurological basis. To categorize brain illnesses,
Eslami et a [66]l introduced the Auto-ASD-Network, which combines DL’s ability
to identify significant patterns in data with the discriminative power of the SVM
classifier. The SVM classifier uses DL model features as input. They use a data aug-
mentation approach called SMOTE to double the quantity of items in the training set
to improve generalizability and accommodate for DL’s tendency to overfit. Heinsfeld
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et al [67] claimed the greatest classification accuracy. They achieved a mean classi-
fication accuracy of 70% (sensitivity 74%, specificity 63%) in cross-validation folds,
and a range of 66-71% in individual folds. The SVM classifier had a mean accuracy
of 62% (sensitivity 68%, specificity 62%), whereas the Random Forest classifier had
a mean accuracy of 63%. (sensitivity 69percent, specificity 58%).

2.4.6 Body Movement Based

According to Großekathöfer et al[68] using Stereotypical Motor Movement as a
marker for ASD detection improved detection accuracy by 5 to 9% compared to
existing published results. They also observed that excluding users from classifier
training results in good detection accuracy. The chest accelerometer gave the most
significant features for categorizing. This illustrates that a single torso sensor can
reliably detect both body moving and hand flapping. Sadouk et al [69] employed DL
on stereotypical motor movement (SMM) activities. Outperforming earlier research,
they constructed temporal and frequency-domain CNN models with model param-
eters determined by input space. These frameworks adapt to stereotyped behavior
patterns of every new atypical individual with only very few labeled SMMs, and (ii)
overcome the medical problem of a shortage of marked SMMs per subject. Because
the cross-domain transfer learning approach employs a dataset from such a target
domain other than the target domain, it does not require SMMs for training. As a
consequence, lack of medical target data no longer reduces the range and learning
capacity of CNN models.

2.4.7 Video Based

Leblanc et al [70] built a pipeline that generated characteristics and input these
into a diagnosing classification model. There was no difference in performance be-
tween the LR9 and ADTree7 models. A 10-fold GridSearch cross validation cus-
tomized for UAR trains all pipeline pieces for each model and each feature imputation
methodology. The developed pipeline is then tested on the U tube dataset, which
includes various ratings (i.e., most frequent value). Comparing generic and dynamic
feature substitution to single and multivariable feature imputation All in all, they
discovered that using algorithmic-driven replacement questions and dynamic feature
imputation enhanced UAR. Using DL, Li et al [71] propose diagnosing ASD from raw
video. Our initial step is to monitor the eye movements in each video. Thei r second
step is to turn these monitoring trajectories into angle and length histograms. Last
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but not least, we categorize these two histograms using a three-layer LSTM network.
The LSTM network outperforms other ML methods like SVM by 6.2%. (from 86.4%
to 92.6%). Given that this approach was designed to identify ASD, the sensitivity
(TPR) and specificity (TNR) are excellent.

2.4.8 Multimodal Based

Alcañiz et al [72] implemented a multimodal virtual reality experience, where 24
children with ASD and 25 children with typical neurodevelopment participated.They
tracked changes in their bodily motions in this Virtual Reality. Then it was deter-
mined which bodily parts may have a role in the discriminating between the two
groups. The purpose of this study was to see whether virtual stimulus condition
could better distinguish between the two populations’ body regions. To assess body
motions in a multimodal VR experience, they employed a ML technique to analyze
body movements in three stimuli conditions: visual, auditory, and olfactory.
Sadek et al [73] studied many categories for ASD identification and analyzed various
forms of detection systems that employ ML, computer vision, and neural networks
to identify autistic individuals. ASD using ML was detected by Rahman et al. (cit-
erahman2020review) who offered numerous methods to speed up the implementation
of processing data for ASD detection using ML. Several strategies for finding and
processing unbalanced data in such detection methods have also been investigated by
the researchers.

2.5 ASD Monitoring and Management

2.5.1 Common Approaches of Management and Monitoring Systems

The following are some popular techniques for controlling and monitoring ASD
systems: at the outset, ASD symptoms must be discovered, which may be done in a
variety of ways, such as utilizing questionnaires to identify the most prevalent ASD
signals. Once this step is complete, we may use IOT-based devices that use different
sensor motors or wearable devices to track an individual’s everyday actions. We can
monitor an individual’s behavior and how he or she responds to diverse circumstances
by deploying these technologies. We can develop a system to monitor or ease their
behavioral cycle after we’ve identified it, and we can utilize a variety of apps or
web-based platforms to do it. Thus, we can train them and improve their lives by
providing diverse approaches, equipment, and other resources.
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2.5.2 Artificial Intelligence in Autism Management

Since ASD is correlated to physiological changes associated with negative emotions
in people, monitoring these emotional changes can provide caregivers with a real-time
picture of what these people are going through. An effective monitoring system may
raise caregivers’ awareness of a person’s emotional condition, allowing them to take
the appropriate steps to reduce stress symptoms and encourage the individual to use
better stress coping skills.

In this section, we’ll look at how IoT-based and wearable gadgets might aid autis-
tic individuals by detecting their actions using various sensors, and then we’ll look
at the applications and websites that can be used to monitor their behavior. Anxi-
ety problems are common in children and adolescents with ASD, with an estimated
incidence rate of 40 percent [74]. Various physiological indicators and markers are
considered for physiological and emotional evaluation. Heart Rate Variability (HRV)
is a useful metric that computes the time intervals between two successive R peaks
in an ECG signal obtained by an ECG sensor. Jansen et al. found some evidence of
heart rate arousal variability in response to public speaking stresses [75]. The total
number of breaths, or respiratory cycles, that occur each minute is known as the res-
piratory rate (RR). The rate of respiration might alter owing to disease, stress, and
other factors. The respiratory center, which is located inside the medulla oblongata
of the brain, regulates breathing rate. The rate of respiration has been proved to be
an effective stress indicator [76]. The conductivity of the skin is measured by the Gal-
vanic Skin Response (GSR). The GSR may be measured by inserting two electrodes
on the skin’s surface, one of which injects a small amplitude AC current into the skin
and the other of which uses Ohm’s Law to calculate the skin’s impedance given a
certain voltage. GSR has been suggested as a potential stress indicator [77].

Wearable gadgets for physiological and, to a lesser extent, emotional monitoring
are widely available on the market. Cabibihan et al. [78] conducted a review of
the academic literature on several sensing technologies that might be used for ASD
screening and treatments. Eye trackers, movement trackers, physiological activity
monitors, tactile sensors, voice prosody and speech detectors, and sleep quality assess-
ment devices were among the sensing technologies studied. The devices’ advantages
and usefulness in assisting the treatment of various symptoms in people with ASD,
as well as their limits, were evaluated. Tang et al. [79] focused on the integration of
a realistic environment based on multi-sensor interrogation to assist NT persons in
"reading" the emotional state of ASD youngsters. They include four different types
of meters into their design in order to collectively perceive users’ behavioral patterns,
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as well as individual and group emotions: Individual physiological data: perspiration,
pulse rate; then individual behavioral data: gestures, head, facial expressions, hands,
and upper-body movements, motions, and Following that, sociometry with integrated
sensors, RGB-B sensors, and low-cost depth sensors is used to gather data. Noten-
boom et al. [80] used physiological signals to evaluate autistic people’s emotions, and
they created recommendations based on the target group’s user requirements. Be-
cause the target population is sensitive to stimuli and has difficulty adjusting, certain
design criteria are important. As possible designs, a smartwatch, a patch, and an
infrared camera were considered. The recommendations were developed as a result
of the examination of these designs. The smartwatch came out on top, followed by
the patch. An infrared camera isn’t the best option. The principles can be utilized
to create a wearable that measures autistic children’s physiological signals. Northrup
et al. [81] created a combination of tailored features in IoT based wearable compat-
able with mobile application which analyzes stress reactivity in ASD children with
real-time capabilities and sends on spot notifications to a caregiver through a mobile
portable device.

2.5.3 Available Softwares and Websites for ASD Management

Let me talk: The free AAC talker 1 software, which is accessible for both Android
and iOS, assists in the creation of intelligible phrases by aligning graphics. This row
of photographs may be interpreted as a phrase if the images are linked together in a
meaningful way. This program, they believe, is appropriate for autism symptoms, AS,
and ASD. AAC stands for aligning images (Augmentative and Alternative Commu-
nication). LetMeTalk’s picture library includes over 9,000 easy-to-understand photos
from the library. Again, the built-in camera may be used to add existing photographs
from the device or to capture new ones. Considering ASD patients have a hard time
interacting with neurotypicals or other peers in society, this type of software can be
a huge assistance in expressing their emotions.

Cough Drop : Symbol based AAC 2 is another AAC app. The history of building
Coughdrop is quite interesting. Brian Whitmer, a software engineer, and entrepreneur
was looking for an effective communication method for his daughter who had been
diagnosed with RS when he came up with Coughdrop. He was disappointed by bad
design decisions and outdated technology because of his experience in usability, so
he teamed with around 30 SLPs, OTs, and IT specialists to create something better.

1https://apps.apple.com/us/app/letmetalk
2https://www.coughdrop.com/
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CoughDrop was the end outcome. Brian soon met Scot Wahlquist, whose son has
autism and is nonverbal, and the two collaborated to improve CoughDrop for people
with any communication requirement. They believed that too many suppliers were
attempting to "lock in" clients through proprietary solutions and expensive costs,
and they sought to change that. As a result, CoughDrop is open source and includes
open-licensed material such as free symbols and community-generated boards, as well
as all of our word sets, which are all provided under a Creative Commons license.
This software is accessible on the App Store, Google Play, and Amazon, and it may
also be accessed through web browsers and Windows. This software allows you to
communicate with friends and family in a personalized way across numerous devices.
With a simple interface and enough support and teaching, one may gradually increase
one’s vocabulary. It operates offline with cloud backup, making switching devices a
breeze if something goes wrong. It’s also possible to share boards with others and
open-license them for usage by anybody. across classes, and make access management
easier. Individuals may plan a successful approach using built-in goal-tracking tools
and gain recommendations for how to strengthen communication tactics from com-
munity experts. License consumption may be readily tracked and data can be viewed
across rooms, buildings, or teams. People may easily travel between classrooms, and
access constraints can be simplified.

ABA Flashcards and games-emotion 3 is a useful program for applied behav-
ior analysis (ABA) therapists and other professionals who work with students with
autism and similar problems. This software is only accessible in the app store and is
completely free. Telehealth mode for distance learning is one of the app’s features.
Designed specifically for DTT and intense instruction sessions, Create your flashcards
or use the built-in activities. Use photographs from your gallery or look for pictures
and gif animations on the internet. Data collecting and automatic grading Multiple
student profiles are supported. Autism Read and Write 4is a Google Play Store app
that is primarily developed to enable ASD children in learning the fundamentals of
reading and writing. To get started with the reading lessons, click on Start -> Read-
ing lessons. Start -> Writing lessons if you want to learn how to write. The reading
and writing classes are of varying degrees of difficulty. Change the levels by going to
Settings - > Reading level or Settings - > Writing level.

Social story creator educators [82] is an iOS device software that can assist autistic
children in better learning how to deal with various social events, as well as allow them

3https://apps.apple.com/us/app/aba-cards
4https://play.google.com/store/apps/details?id=com.benitez.autismrandwfree

23



to create tales about various occurrences. Autism is linked to reciprocal behaviors,
making it difficult for persons with autism to react appropriately to a circumstance.
As a result, this sort of tool can assist folks who are unaware of how to handle these
circumstances. Rethink Ed 5 is a web-based platform that offers autistic children
social-emotional learning, mental health awareness, and special education. It guaran-
tees that autistic children have access to the most effective educators who can provide
them with a high-quality education. Rethink Ed offers scalable professional develop-
ment for students with autism, including video models, high-quality lesson plans, and
a curriculum. Communication and social skills are emphasized to help individuals
with ASD fully engage in their education. AsDetect [83] is a screening application
for people with ASD. This software is a useful tool for detecting ASD early on. It is
incredibly simple to use; simply sign up for the app, then enter the patient’s informa-
tion and complete an evaluation. After completing these procedures, one may check
the results and determine whether or not a person has ASD. They created a demo-
graphic questionnaire by administering assessments such as BSID (Bayley Scales of
Infant Development)- Third Edition. The goal of Language therapy for children with
autism MITA [84] is to create unique, digital apps based on proven, evidence-based
early-intervention therapies designed specifically for very young children with ASD.
These apps have the potential to significantly narrow the gap between the quantity of
therapy prescribed and the amount of therapy received by children with ASD while
also improving care quality. MITA’s activities use a methodical way of teaching the
skill of responding to many cues. The exercises’ greatest distinguishing characteristic
is their ability to deliver instruction outside of the verbal realm, which is critical for
children with ASD who are either nonverbal or just marginally spoken. While these
youngsters may not be able to follow a spoken command (such as "pick up the red
crayon beneath the table"), preliminary findings from our pilot research (see the "Ini-
tial Results" section, below) show that they can obey a command provided visually
rather than vocally. MITA helps children develop their creativity and linguistic skills.
The visual activities are organized in a methodical way to help your youngster learn
to notice many characteristics of an item. MITA begins with easy tasks that educate
a kid to focus on only one aspect of a situation, such as size or color. The tasks
become increasingly challenging with time, requiring your youngster to focus on two
things at once, such as color and size. After the kid has practiced paying attention
to multiple puzzles and games. Finally, complex problems require the child to pay
attention to an ever-increasing number of qualities.

5https://www.rethinked.com/edu
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The Jade 6 Autism app aids in the development of cognitive skills by increasing
information and improving development. It can act as a mediator in the process of
acquiring skills and abilities such as attention and logical reasoning, in addition to
assisting in problem-solving, strategic thinking, and decision-making. Activities are
categorized into degrees of difficulty within each category, and each phase is only
unlocked based on the child’s performance, following the natural flow of learning and
respecting each child’s pace and personality.

2.6 Research Gap

The requirement for cost-effective ASD evaluation, combined with the global in-
crease in ASD cases, necessitated the deployment of rapid and effective evaluations
provided by data science and artificial intelligent, including DL and neural network
algorithms. Although numerous efforts to evaluate ASD using ML techniques such as
genetic data, eye tracking, and functional magnetic resonance imaging (fMRI), has
been taken. These types strategy needs further investigations to prove worthy to be
used in real life scenario. Maintaining accuracy, ensuring data balance, utilizing a
benchmark dataset, and reducing diagnosis duration are all critical considerations in
ASD classification. Despite this, a critical flaw in CI-inspired detection and manage-
ment continues to be a lack of sufficient dataset size. Because ASD patients’ symptoms
vary, the number of patients willing to participate in data collection methods remains
low. Because the majority of studies use data from no more than 50 to 300 ASD pa-
tients, the publicly available datasets [45, 46, 48, 47, 49, 50] are significantly smaller
in size than other healthcare-related datasets. Additionally, data augmentation is
frequently used in a variety of ways to increase the number of data instances. Again,
the majority of datasets are based on questionnaires, which may be insufficient to
capture ASD patients’ subconscious behavior and social deficits. DL techniques have
a limited number of implementations due to the scarcity of data. Additionally, time
and computational complexity are reduced through the use of feature reduction and
selection algorithms. Numerous modalities have been used to detect ASDs, including
questionnaires, EEG, ECG, MRI, eye tracking, eye scan path, simulation and task
completion, facial imaging, neuroimaging, behavior analysis, body movement analy-
sis, video and audio analysis, and genetics. Though numerous attempts have been
made to classify individuals using the aforementioned modalities, the majority of the
study focuses on classification using only one or two modalities. Again, due to the

6https://jadeautism.com/en/home/
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scarcity of data, the majority of studies employ only shallower ML and DL models.
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CHAPTER III

Methodology

3.1 Overview

In this chapter, a questionniare based on all possible ASD screening methods
is combined into one. The questionniare is used to conduct a survey. The data is
analyzed to determine the most prevalent symptoms. Then, based on these symptoms,
the next stage of data collection includes audio, behavioral, and video. Following that,
a detailed description of the feature extraction process from audio and video data will
be provided. Following that, several multimodal architectures for ASD classification
were discussed.

3.2 Basic Workflow

The proposed methodology encompasses multiple facets of autism screening and
type identification. Historically, autism screening methods have been more depen-
dent on health professionals and checklists; thus, the proposed method will assist the
professional rather than replace them. The majority of medical research is devoted to
determining or correlating symptoms with ASD or other diseases. In technical terms,
the majority of recent ML research is focused on a single aspect, such as a question-
naire, checklist, facial image, eye tracking, eye scan path, genetics, image data, brain
imaging, MRI, f-MRI, motor movement, video analysis, audio analysis, task com-
pilation, and simulation. Though in each study, one or two modality combinations
with one or more ML methods are tested for autism screening. The purpose of this
article is to propose combining the two disciplines into a single multimodal screening
method. Thus, we began by compiling a list of all possible biomarkers for ASD and its
subtypes. We conducted a small survey to determine the most distressing symptoms
in ASD. This process included the creation of a scenario-based questionnaire. Then
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Figure 3.1: System pipeline of proposed methodology.

we expanded this questionnaire into an appropriate simulation and task, allowing us
to elicit the subconscious response of the human mind. As an illustration, a scenario
is created with the necessary objects and the reaction of a patient is collected for
further investigation. This allows for the application of cutting-edge ML models and
sensing techniques to a specific patient. We concatenated the predictions of the indi-
vidual ML models to create a multimodal ML model for predicting overall screening
and type detection results. Additionally, we have integrated a smartwatch (Fitbit)
for monitoring and detection. This smartwatch can monitor various aspects of human
health, including sleep patterns, sudden movement, acceleration, heart rate, abnor-
mal breathing patterns, and sound volume. Daily patient reports can be generated
from this data and used by health professionals and caregivers to take further action.
Implementing all ML models for each component is beyond the scope of this study.
Preprocessing, feature extraction, CNNs, and related neural networks can all be used
to implement expressive imaging classification. Additionally, these algorithms can
be used to classify eye tracking scan paths. When using video data for traditional
eye tracking, eye area, head movement, and behavioral features can be extracted and
shallow DL classifiers used. For ASD patient voice data, time series classifiers such
as GRU-RNN, LSTM, and Transformer are most frequently used. By concatenating
these neural networks, a diverse range of data types can be condensed into a single
prediction for ASD Screening.
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3.3 Numerical Detection Using Questionnaire:

Previous similar checklists such as Mchat[5] are primarily focused on specific age
groups. On the other hand, though DSM-5 [2] gave an overview of symptoms in ASD,
the direct questionnaire has not been provided. Again, a straightforward question by
asking whether any of the symptoms are present or not in individuals may carry a
certain level of human error. The severity of these issues may remain unclear. As a
result, a scenario-based severity scaled question was also required. Thus the creation
of a question set for determining ASD and its types was necessary. A question-
naire derived from the symptoms mentioned above has been listed in detail in Figure
2.1 with relevant ASD types, which allows measuring across the whole spectrum of
autism. The questionnaire consists of 24 questions, with 82 fields representing op-
tions for these questions. These questions enable discrimination of the three major
components of autism. Each of these options was then graded on a five-point scale.
Age, gender, ASD types, and other miscellaneous questions also have been added to
the survey.

3.3.1 Participation and Procedure:

The collection of data from various people of various ages with clinically diagnosed
ASD has been the survey’s main focus. The scenario of each question has been por-
trayed in such a way that it can be relatable with all kinds of individuals: toddlers,

Figure 3.2: Values of responses corresponds to questionnaire

children, adolescents and adults. A google form has been prepared with multiple-
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choice options from the questionnaire. The form was sent to an autism specialized
school, doctors, and students for completion. Filled results have been checked respec-
tively to find out the anomaly. A separate form with the same questionnaire has been
sent to ordinary educational institutions. Only form responses correspond to partic-
ipants who had no prior disorders and were subsequently labeled as neurotypical.

3.3.2 Dataset Details and Data Distribution:

There are 71 data instances in the collection; all acquired from the same number
of people [1]. The participants were split into two groups: 42 men and 29 women.
The ages of the participants ranged from four to twenty-seven, with an average of
18.8 years. The participants filled out 38 forms, family members filled out 32 forms,
and a health professional filled out one. Thirty-nine participants were neurotypical,
while 32 were clinically diagnosed with ASD, including 16 AD, 4 AS, 4 CDD, 4 RS,
and 4 PDD-NOS patients. Figure 3.2 represents the relationship of responses with
the particular question, whereas color represents the value of each field. The last
few questions in the proposed questionnaire delineate physical impairment, which is
nonexistent for most ASD cases except for Rett syndrome. Hence those fields have
been occupied with lower values. For the rest of the questionnaire, the values were
evenly distributed.

3.4 ASD Detection from Questionnaire Using ML

Four ML techniques, namely support vector machine(SVM), k-nearest neighbors
(KNN), random forest(RF), and artificial neural network(ANN), have been utilized for
the classification of ASD and its types. SVM assumes data points as support vectors
and uses hyperplanes to separate data into classes. One vs. one has been selected as
a decision function shape in SVM, which calculates a hyperplane for two classes at
a time. Radial Basis Function (RBF) has been utilized as the kernel. On the other
hand, KNN groups together data points based on similarities or distance. The number
of neighbors for ASD classification is selected as 20. RF is an ensemble classifier
consisting of multiple decision trees, where each tree predicts the output, and the final
prediction is given on the majority vote. In the experiment, the number of estimators
is set as 20 with two random states and a max depth of 15. SVM, KNN, and SVM
have been implemented using the Scikit-learn library. The proposed ANN consists of
one input layer, three fully connected hidden layers, two batch normalization layers,
two dropout layers, and an output layer. The number of neurons in hidden layers is
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32, 256, and 64, respectively. The first two hidden layers utilize rectified linear unit
(ReLU) as the activation function, whereas a sigmoid is used in the last hidden layer
and the output layer. For loss function, categorical cross-entropy has been used with
adam optimizer. All of the ML classifiers have been executed for 100 epochs.

3.5 Feature Extraction Algorithm

Multiple modalities of data were collected for datasets in this investigation. For
the wide differences in data forms and the sheer volume of data, training and testing
any neural network on a home computer is implausible. Thus, both video and audio
data have been subjected to extensive preprocessing in order to extract required
features.

3.5.1 Video Feature Extraction

The video feature extraction algorithm takes video sequentially from a directory
path. The video files were combined into a single folder and then read loaded via
a separate function. The eye iris center, the convex polygonal area of the eyes, the
displacement of the head position, the convex polygonal area of the outer mouth, the
eye scanpath, and the facial image are all extracted in this manner. For 60 seconds,
these features are combined into a single data point, which will be discussed in greater
detail later in this section. Mediapipe, Google’s open-source framework, is used to
detect faces and predict facial landmarks within the bounding box. With a minimum
detection confidence of 60%, only one face with 478 points has been taken. To begin,
all 478 indexes are listed. The OpenCV library is used to parse each video file. Only
valid frames with detected faces are passed on to the next processing stage. Due to
the fact that Face Mesh, one of the ML solutions in Mediapipe, only outputs the
normalized value of 478 points, the frame’s height and width are multiplied to obtain
the actual coordinate value of any feature. In Face Mesh, the Iris position consists
of four points. To determine the iris’s center, a minimum enclosing circle with these
four points is calculated using the center and radius. The center indicated by both
the x and y axis corresponds to the actual iris center, which is saved in a separate
list. Lips points are composed of multiple coordinates. The area of the lips is used
to determine how much the necessary target opens, allowing us to determine whether
participants are shouting or remaining silent at any given time. To begin, a convex
hull is calculated to determine the convex polygon with maximum area. Then, using
the summation value of the triangles in the polygons, the area can be calculated.
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Similarly, the left and right eye areas are calculated using the points. The eye area is
used to determine the participants’ level of awareness and blinking. The movement
is also determined using the coordinates of the head’s center position. The second
layer of preprocessing involves further data point reduction. Due to the fact that the
majority of the video is 30 frames per second and the window is about 60 seconds
long, a total of 1800 data points are listed for one feature. If we take two coordinate
values for each eye and iris, the amount of data becomes unmanageable. Thus, two
eye areas are averaged into a single eye area, just as two iris coordinates are averaged
into a single iris coordinate. The iris coordinates were then plotted as a scatter plot
to represent the path of the eyescan. The current position is subtracted from the head
position using the two-point distance formula to determine the pixel distance. Only
if the distance is greater than the average value summation with standard deviation
is the head movement counted. Blinking and awareness in the eye area, as well as
shouting and quietness in the mouth area, were also counted. Although these features
reduce the model’s capacity, the previously mentioned 1201 features are used in the
final datasets.

Figure 3.3: Spectrogram of imported audio data

3.5.2 Audio Feature Extraction

ASD patients lack social and behavioral communication abilities. Thus audio from
the survey is further analyzed, and preprocessed to be trained on a neural network.
At first every sound file is split with a time window of 60 seconds, and saved as a
Waveform Audio file (wav). Since the available preprocessing python library utilize
.wav file only, this conversion was necessary. For each of the cropped wav file zero
crossing value,spectral centroids, spectral rolloff, Mel-frequency cepstral coefficients,
chroma features from short-time Fourier transform (STFT), spectral bandwidth is
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calculated. The number of audio feature in the dataset is 73.

Figure 3.4: Depiction of wave crossing zero point

Zero Crossing Rate The Zero-Crossing Rate (ZCR)3.4 of an audio frame is de-
fined as the rate at which the signal’s sign changes across the frame. For example, the
number of times the signal changes value, from positive to negative and vice versa,
is divided by the duration of the frame to calculate a signal’s frequency. The ZCR
value can be regarded as a measure of the noise level of a signal in some situations.

Figure 3.5: Centroids of The Spectrum of The Imported Audio Data

Spectral Centroids It is the centroid of the spectrum, and it is a measure used
in digital signal processing to characterize it. It indicates where the electromagnetic
spectrum’s center of mass is located. It has a strong link with the impression of
brightness caused by sound, according to perception.

Spectral rolloff It is the operation of a certain sort of filter that is meant to roll
off frequencies that are outside of a certain range. The term "roll-off" refers to the
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Figure 3.6: Rolloff of The Spectrum of The Imported Audio Data

progressive nature of the practice. Hi-pass and low-pass filters are two types of filters
that can roll off the frequency from a signal that goes outside of their range. The
spectral roll-off point in the power spectrum is the fraction of bins in which 85 percent
of the power is at lower frequencies. Setting the roll percent to a value near 1 and 0
can be used to calculate the maximum and minimum.

Figure 3.7: Mel-frequency cepstral coefficients of Imported Audio Data

Mel-Frequency Cepstral Coefficients The initial stage in any automatic speech
recognition system is to extract features, that is, to identify the components of the
audio signal that are useful for detecting the linguistic content while ignoring every-
thing else, such as background noise, emotion, and so on. The critical aspect to grasp
speech is that the sounds produced by humans are filtered through the form of the
vocal tract, which includes the tongue and teeth. This shape dictates the type of
sound that is produced. If we can precisely establish the form, we should be able to

34



obtain an exact representation of the phoneme being produced. The form of the vocal
tract is represented by the envelope of the short-time power spectrum, and MFCCs
are responsible for appropriately representing this envelope.

Figure 3.8: Chromagram of The Imported Audio Data

Chromagram Because the term "chromatography" relates to the process of sep-
arating distinct components from their combination, we may comprehend the term
"chromagram" in the context of audio files. When it comes to audio file analysis, an
audio file can contain up to 12 distinct pitch classes. These pitch class profiles are
extremely valuable for audio file analysis. The term chromagram refers to a repre-
sentation of the pitches contained within an audio file in one location, in order to
facilitate the classification of the pitches contained within the audio files. Pitches are
a feature of any sound or signal that enables file organization on a frequency-related
scale. It is a measure of the sound’s quality that aids in classifying the sound as high,
low, or medium.

Root Mean Square The root-mean-square (RMS) amplitude or level analysis is
used to determine the overall amplitude of a signal. It refers to the average signal
amplitude conceptually. It is, however, not the same as calculating the arithmetic
mean of a signal. Positive and negative amplitude values are possible for an audio
signal. If we took the sine wave’s arithmetic mean, the negative values would cancel
out the positive values, yielding zero. This method provides no information about the
average signal strength. This is when the RMS value comes in handy. It is based on
the magnitude of a signal as a proxy for signal strength, regardless of its amplitude.
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Figure 3.9: Root Mean Square of Signal to Noise Ratio

The magnitude is computed by first squaring each sample value (to ensure that they
are all positive), then calculating the signal average, and then performing the square
root operation. More precisely, the RMS level is "the square root of the signal’s
arithmetic mean squared.

3.6 Multimodal Dataset Details

The multimodal dataset consist of nine different modalities grouped into five sec-
tions. From the previously mentioned questionnaire studied, the question and task
with highest correlation values are asked to the participants. Though Asperger’s,
PDD-NoS, AD, and Rhett syndrome patients were grouped in to the ASD class. The
first one of the modalities, is the facial images of both ASD and neurotypical per-
sons. Eye scan path is created from the video data. Then behavioral information is
collected from the eye area, and mouth area. Motor movement is calculated from the
head position and also from gyro accelerometer sensor of Fitbit watch. This watch
also used to collect information like, heart rate, activities and calories consumed.
Lastly the audio data is also taken. The final dataset consist of one audio input with
73 features, facial image, eye scan path, 1201 video extracted data and 8 data instance
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from the fitbit watch the total amount of data collected is 1960. It is necessary to
mention that several instance is collected from one participates.

3.7 Neural Network Layers in Multimodal Classification

There are several layers for implementing each of of the neural networks necessary
for multimodal neural networks.

3.7.1 Dense

In a neural architecture, dense layers are highly interconnected with one other
and with the layers above them. This is the most prevalent layer in neural networks.
Neurons in the dense layer receive input from neurons in the preceding layer during
matrix-vector multiplication. In matrix-vector multiplication, the previous layers’
row and column vectors are alike. The row vector and column vector must both
have the same number of columns. The matrix and previously learned parameters
may both be updated via backpropagation. Backpropagation can be used to train
feedforward neural networks. Backpropagation is used to calculate the gradient of the
loss function for single input or output in a neural network. Based on the available
data, we may deduce that the dense layer’s output is an N-dimensional vector. The
size of the vectors is shrinking. Each neuron in a dense layer effectively changes the
vector size.

3.7.2 Dropout

In order to simulate the simultaneous training of several different neural networks
with various topologies, the dropout regularization approach is used. Certain layer
outputs are "left out" at random during training. Thus, it appears and behaves as
though it were a whole new layer, one with a distinct set of nodes and connections
from the one it follows. Each "view" of the current layer is used to modify a layer
during training. Dropout adds noise to the training process by requiring nodes inside
a layer to take on a stochastic distribution of responsibility for the inputs. Dropout,
in this model, separates instances when network echelons co-adapt to address flaws in-
troduced by preceding levels, hence increasing the architecture’s durability. Dropout
emulates sparse initiation from a particular layer, which has the unintended conse-
quence of encouraging the model to acquire a sparse representation. As a result, it
may be used in place of activity regularization to promote sparse representations in
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autoencoder models. Due to the random subsampling of the outcomes of a layer with
dropout, the capability of the network is reduced during training. As a result, when
dropout is used, a larger network, i.e. additional nodes, may be required.

3.7.3 Batch Normalization

Normalization is a technique for translating quantitative data to a standard scale
without altering the data’s shape. We frequently balance the sizes of the numbers
when entering data into a ML or DL system. To verify that our model generalizes
correctly, normalization is required. Batch normalization is a method for expanding
the quantity of layers in a deep neural network to improve its efficiency and reliability.
On the input of the previous layer, the next layer conducts standardization and
normalization processes. Batch data, which is a collection of input data, is frequently
used to train a neural network. Batch normalization, on the other hand, works in
batches rather than as a single input.

3.7.4 Convolution

When two functions are combined in an ordered fashion, convolution is the process
of transforming one function into the other. Using convolutions in image processing
has been around for a long time, but they can also be utilized for a variety of pur-
poses. To emboss and enhance the edges, for example, CNN’s ensure that neurons
in nearby layers communicate with one other via the same connections. Image prop-
erties, such as edges, can be detected by CNN using the filters (also referred to as
kernels) utilized by the algorithm. The first layer of a Convolutional Neural Network
is often a Convolutional Layer, as the name suggests. The output of one layer is sent
to the next via a series of convolutional layers. Receptive area pixels are all turned
to one single value using convolution. It is possible to minimize the overall image
size while still retaining all relevant information by using a convolutional algorithm
on the image. The final output of the convolutional layer is a vector. It is possible to
use different forms of convolutions for different problems and learning objectives.

3.7.5 The 2D Convolution Layer

It is the most often used type of convolution, and it is denoted by the abbrevi-
ation conv2D (for two-dimensional). A filter or kernel in a conv2D layer conducts
component-wise multiplication by "sliding" through the 2D input data in a conv2D
layer. The result will be an output pixel consisting of the total of all of the results
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obtained thus far. If the kernel slides over a point in a 2D matrix of features, it will
convert that 2D matrix of attributes into another 2D matrix of features.

3.7.6 Maxpooling 1D

There are layers called max pooling after convolutional layers that let the inner
convolutional layers get input from more of the original vector. This lets them work
with a bigger part of the original vector than before. The maximum number of layers
can be pooled at one time. If we think of convolutional layers as detectors of a
unique feature, max-pooling only keeps the "strongest" value of a feature that is in
the pooling rectangle. For each of the channels, there is a different way to go about
it (and subsequently, each characteristic). Each window of data is swept over by an
infinitely large pool (window) with a predetermined stride. The maximum is then
found for each window of data.

3.7.7 Maxpooling 2D

When given a tensor of size (input width) by (input height) by (input channels),
the 2D Global max pooling block computes the maximum value of all values through-
out the whole (input width) x (input height) matrix for every one of the input channels
in the input tensor (input channels). As a result, the output is a 1-d tensor of size.

3.7.8 Attention

The attention mechanism enables a neural network to store extended input se-
quences and is commonly employed in neural machine translation (NMT). As stated
previously, the encoder compresses the sequential input to a context vector. We
may employ attention to construct a link between all input and the context vector,
with different weights for each output. Because input and context vector is linked,
the context vector may access the full input, reducing the risk of missing extended
sequences.

3.7.9 Self Attention

Intrinsic attention, also known as self-attention, occurs when an attention method
is applied to a network in such a way that it may relate to various points of a same
sequence while simultaneously calculating a representation of the same sequence.
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3.8 ASD Detection with Multimodal Neural Network

Figure 3.10: Proposed Multimodal network with Uni model concatenation

Multimodal neural networks takes several types of inputs and output the targeted
label in the supervise learning. Although multiple instance or modalities increases
the effectiveness and over all accuracy of any detection systems; there are still no
golden rules for the model creation. Furthermore the necessity of all types of data
some makes it harder for any data instances of less modalities. In this study, three
types of multimodal neural networks has been proposed and implemented to test
the effectiveness of each approach. The first approaches is to built neural networks
for each of the modalities, output the predictions then concatenate those production
further in a dense layer and train the whole architecture as a single one 3.10. For this
study five such networks has been created. For image classification, convolutional
neural networks with two dimensional convolution , max pooling , dropout has been
utilized each of convolution part consist 3 by 3 kernel filter followed 5 by 5 kernels.
After applying these operation several times, dense layer has been added for the
classification purposes, the last layer before concatenation consist of one neuron with
sigmoid activation. Two such network has been used for eye scan path, and facial
images. Audio data has been classified with RNN. LSTM layer has been utilized
with dropout to capture the temporal dimensionalities. After that sequential dense,
dropout and batch normalization has been utilized. The last dense layer has been
added for the classification purposes. The input from Fitbit data is fed into fully
connected layer with dropout. Similar to previous network the last out layer contains
one neuron with sigmoid activation. Behavioral data from video data is large in
dimension. To reduce this, one dimensional convolution and one dimensional max
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pooling is utilized with dropout. Subsequently the inputs are reduced from 1201 to
256. Dense layer then added for the classification purposes. The last neurons from all
of these layers then concatenated into one dense layer. Two hidden layer then applied
before the final classification.

Figure 3.11: Proposed Multimodal network with hidden layer concatenation with
selective dropout

The second model3.11, concatenation happens in the hidden fully connected layers
of each models. This allowed shared hidden layer for each of the neural networks sub-
sets. Similar to the previous approaches, two 2D-CNN.one 1D-CNN, one RNN with
dense layer in the last , is concatenated for the classification. Except, in this approach
the dense layer disjoint to each other consist of 64 to 256 units with ReLU activation.
In some version of The analysis , attention layers also added after concatenation.
This followed by a sequence of shared dense layer, batch normalization and dropouts.
ReLU activation is applied in all of these dense layers. The final output layer consist
of only one neurons, because of binary classification. The most prominent model,
however, comes from the concatenation of features layers3.12. Then this concatena-
tion is fed into fully connected layers shared by the all data modalities. Initially each
of the data modalities is given into the feature extraction layers of neural networks
like 2D convolution with excitation blocks, that is a smaller convolution followed by a
larger kernel size and filter size then again reduced into smaller filter size again. These
also reduces the computational complexity of large operation, at the cost of model
complexity. Rest of the neural networks are similar to previous two models excepts
there is no disjoint dense layer added to them. The shared dense layer consists of

41



Figure 3.12: Proposed Multimodal network with feature layer concatenation with
selective dropout

relatively smaller number of neurons then 5 model calculating separately. However
there is two problems in the above mention models. The first one is to oscillation of
loss that lead to the fluctuation of results also. Another problem, in the case of any
input data consist of less modalities then expected, the out can be predicted.

3.9 Proposed Selective Dropout Layer

As mentioned previously, the models required to handle one or several missing
data modalities. However learning using traditional dropout layer randomly dropout
any of the given percentage of the neurons, does not imply training capacities for all
type modalities. Again an weighted average prediction from single modality classifier
can perform better than the multilabel in case of missing data, it just eliminate the
model that has no data from the model stack. The idea behind the selective dropout
is to drop one modalities randomly during each batch training to ensure that the
model is capable to learn from all of the modalities. And it will be most effective to
use after the concatenation layer. From previous layer input C, let each of modalities
weight contains Ci−1toCi. For all know i if we select one randomly and multiply
with zero, the weights are dropped for ith modalities. Thus enables better training
and testing facilities. Algorithm 1 represents the idea of implementing the selective
dropout layer.
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Algorithm 1 Calculate Dropouts for tf.Layers
Require: selectionArray
Require: previousLayer
Ensure: output = dropout
len← size(selectionArray)
rand← randominteger%len
start← selectionArray[rand− 1]
end← selectionArray[rand− 1]
while start ≤ end do
previousLayer[start]← 0
start← start+ 1

end while

3.10 Proposed Multimodal Architecture

The proposed multimodal neural networks, has separate feature extraction layer
for each of the modalities, outputting the smaller feature set, then concatenating
those outputs in a dense layer and training the entire architecture as a single neural
networks3.13. Binary cross entropy loss function and adam optimization has been
utlized in this study. Five such networks were developed for this investigation. Con-
volutional neural networks using a efficient-net style block has been utlised for feature
extraction. Each convolution phase consists of 3 by 3 kernel with N filters followed by
5 by 5 kernels with 2*N filters then again a 3 by 3 kernel with N filters. Two dimen-
sional maxpooling, batch normalization along column axis and dropout layer is also
added after the convolution in the block. After performing these block operations four
times, the output from the last block is sent for the concatenation. The output size
is 256. For eye scan paths and facial images, two such networks have been deployed.
RNN was used to classify audio data, while two LSTM layer with dropout was used to
capture temporal dimensionalities. Following that,a sequential dense, dropout, and
batch normalization were used. Fitbit data is delivered into a fully connected layer
that has a dropout. The last out layer, like the preceding network, has been kept
seperate for concatenation. Behavioral data with dropout, one-dimensional convolu-
tion and one-dimensional max pooling is processed for feature extraction. All of these
five network output then concatenated into a dense layer with a shape of 1024. Then
the proposed selective dropout is applied. Which will reduce the dependencies on a
specific modality. Though the dropout layer can randomly drops any connection from
previous layer, limiting an specific modality in batch train results with better train-
ing. Then three fully connected layer with 256,256,64 neuron respectively is applied
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before the output.

Figure 3.13: Proposed Multimodal network with selective dropout after Concatena-
tion
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CHAPTER IV

Experimental Analysis

4.1 Overview

In this section, first statistical metrics for comparisons are given followed by data
analysis from two survey. Then ML based type detection and multimodal screening
for different methods are compared.

4.2 Statistical Metrics

Accuracy This statistic reflects how well the method fits across all classes and
is used to evaluate its accuracy. It is beneficial when all of the classes are of similar
significance to the student. Heuristics are used to compute this as the ratio of correct
guesses to the grand total of hypotheses.

Positive Predictive Value or Precision As the number of correctly catego-
rized Positive samples divided by the total number of specimens classified as Positive,
the precision is determined . As the name implies, precision assesses how accurate
the model is in identifying positive samples. This leads to an increase in the nu-
merator and a decrease in precision when the model generates many wrong Positive
classifications or few right Positive classifications.

Recall The recall is determined by dividing the total amount of Positive sam-
ples by the quantity of Positive samples that were incorrectly labeled as Positive.
The model’s capability to identify Positive samples is measured by the recall. More
positive samples are found when the recall is larger. Only the classification of pos-
itive samples is of interest to the recall. Regardless of how negative samples are
categorised, for example, for accuracy, this is how they are analyzed: If the model
mistakenly identifies all of the negative instances as Positive, the recall will still be
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100% if the model labels all of the samples tested as Positive. Let’s take a look at a
few samples to get you started.

F1-score The harmonic mean of the accuracy and recall of a classifier is used to
get the F1-score. You may use this to see how well two classifiers compare. Consider
the following scenario: Classifier A has a greater recall, whereas Classifier B has
a better precision. F1-scores may be used to compare the performance of the two
classifiers in this situation.

AUC For model assessment, AUC (Area under the Curve) is a popular statistic.
In most cases, it’s employed to solve difficulties involving the binary categorization.
The total two-dimensional area under the ROC curve is measured by AUC. As a rule
of thumb, the AUC of a classifier is equivalent to the percentage that a randomly
selected positive example ranks higher than a picked at random negative example.
The ROC curve may be summarized using the Area Under the Curve (AUC), which
allows a classifier to discriminate between different classes. The greater the AUC,
the better the model’s ability to differentiate between positive and negative classes is
considered to be.

Figure 4.1: Mean value of symptoms relevant to ASD types and neuro-typical

Binary cross entropy loss In the case of binary cross entropy, each of the
expected values is compared to the actual class output, which can either be 0 or 1.
Afterwards, it generates the score, which disallows the possibilities based on how far
they are from the predicted outcome. That is, how near or how distant the estimated
value is from the real value.
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Figure 4.2: Mean value of symptoms relevant to ASD types

4.3 Questionnaire Analysis

Correlation analysis assesses the extent and orientation of the relationship between
input and output variables; in this case values of each question and ASD categories.
Figure 4.3 shows the top 18 symptoms with the highest correlation value, where blue
represents negative correlation and red represents positive correlation. The sever-

Figure 4.3: ASD symptoms with most correlation in Dataset

ity of the dataset has been transformed into numerical values ranging from 0 to 4.
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The occurrence of any specific value was then determined using the mean value of

Figure 4.4: PCA analysis of dataset

the symptoms in ASD and neuro-typical individuals. Figure 4.1 depicts the seven
symptoms with the highest association between ASD types and neuro-typical traits.
To determine the most common symptoms among ASD categories, the correlation
between ASD types and questionnaires was evaluated individually. In figure 4.2, the
symptoms with the highest correlation have been depicted with a mean value. As

Figure 4.5: Epochwise Area Under Curve (AUC) and Categorical Cross-entropy loss
of ANN

a result of principal component analysis (PCA), datasets become more interpretable
while avoiding performance degradation. It accomplishes this by generating new
negatively correlated parameters that sequentially optimize variance—principal com-
ponent analysis of two components in the ASD dataset depicted in figure 4.4.
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Figure 4.6: Comparison of performance metrics among classifiers

4.4 ML Detection from Questionnaire

The dataset has been split into 20% data for testing and 80% data for train-
ing. Four ML models(SVM, KNN, RF, ANN) have been trained and tested on the
accumulated dataset. Accuracy and F1-Score have been calculated for model perfor-

Figure 4.7: Fitbit Data Pairplot

mance and comparison. The percentage of correctly predicted classes, both positive
and negative, is referred to as accuracy. F1-score is the weighted average of accurate
classification. Among total positive predictions and valid classification among correct
positive and false negative predictions. Testing accuracy for SVM, KNN, RF, and
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ANN was 89%, 78%, 83%, and 89.8%, respectively, with training accuracy near 100%
for all classifiers. The achieved F1-Score of SVM, KNN, RF, and ANN in testing
data is 86%, 73%, 83%, and 85% subsequently. Figure 4.6 depicts the comparison of
accuracy, recall, precision and F1-Score among ML classifiers. The evaluation metrics
show that SVM and ANN perform significantly better than KNN and RF for ASD
classification. The epoch-wise test and train AUC and loss of ANN is depicted at
figure 4.5.

Figure 4.8: Fitbit Data Correlation Heatmap

4.5 Management Data from Smart watch

Eight features has been selected for the experimental analysis from the fitbit smart
watch. This watch is widely available and have open API that can integrated into any
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application design. Which was also used for collecting data from cloud. Fitbit servers
also track every data points for almost a year. Heart rate, mets, calories, activity
and sedentary has been utilised. Figure 4.8 represents the correlation between each

Figure 4.9: Behavior Data Pairplot

values, here heart0 represent the first heart rate. Among them calories has the highest
spearman correlation value of 0.68. Heart rate has a significant 0.32 correlation with
the output. The highest correlation value another pair plot has been generated in 4.7.
Here the color represents 0 for neurotypical and 1 for ASD patient. This presentation
visually distinguished the difference between the input feature with outputs.From the
calories vs heart rate plot it is shown that the out put can be differentiated. On the
other hands, behavioral data were further compressed into five features, although the
multimodal models works with the uncompressed data, the visualization shows that
it has a good amount of correlation with the outputs. Again similar pair plots at
4.9 shows the differences for the neurotypical persons and ASD in terms of different
features. This also visualize the effect of each features for the classification of ASD
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and neurotypical.

4.6 Multimodal Comparisons

Figure 4.10: Train Accuracy for Different Multimodal Concatenation Technique

To compare the deference of several proposed multimodal architectures, a base
model was first created. All of the neural networks shared characteristics such as
RelU activation in the hidden dense layer, a dropout rate of 0.25, Adam optimizer,
and binary cross entropy loss. The multimodal dataset is divided into two parts: 80%
of each modality is used for training, and the remaining 20% is utilized for testing.
All models were trained and tested for a total of 100 epochs.

Figure 4.11: Test Accuracy for Different Multimodal Concatenation Technique
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Figure 4.12: Training F-1 Score for Different Multimodal Concatenation Technique

Output Concatenation(OC) In output concatenation architectures only the
output sigmoid neurons were concatenated. Each of the modalities were passed into
relevant neural networks for feature extraction and classification. Thus each of the
network before concatenation is exactly similar to those found in classification from
single modalities or uni-modal. Each of the sigmoid output from five modalities then
passed into fully connceted layers with 256, 64 units were used in this architecture.
Each of the dense layer were followed by batch normalization and dropout layers with

Figure 4.13: Testing F-1 Score for Different Multimodal Concatenation Technique

a dropout value of 0.25. The dropout value were similar in all of the models. The
output layer had sigmoid activation, binary cross-entropy is set as the loss function
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and Adam is set as optimiser. After 100 epoch of training and testing, the model
achieved maximum testing ,accuracy of 96.74%, , and AUC of 0.997 . The average

Figure 4.14: Testing Binary Cross Entropy Loss

training loss is 0.1660738825 and average testing loss is 0.08770136029 (fig: 4.14
4.15). It has a average training accuracy of 0.9342578125 whereas the average testing
accuracy is 0.9705989558 for 100 epochs (fig: 4.10 4.11). The value show that the
model suffer from over-fitting from problem since the test accuracy is larger than the
training ones.

Figure 4.15: Training Binary Cross Entropy Loss

Hidden Layer Concatenation(HC) The output of dense layer neurons was
concatenated in hidden layer concatenation architectures. That is, after extracting
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features from each modality, these features were passed to a distinct dense layer.
However, unlike OC architectures, HC architectures concatenate intermediate dense
layers of each sub network, with each layer containing more than one neuron. These
dense layers have been concatenated to form a single layer. Then passed into dense
layers with 256,256, 64 units. Each of the dense layer were followed by batch nor-
malization and dropout layers with a dropout value of 0.25.. The output layer had
sigmoid activation, binary cross-entropy is set as the loss function and Adam is set
as optimiser. After training, it achieved a maximum validation accuracy of 97.31%,
F1-Score of 96.99% (fig: 4.124.13), and AUC of 99%. The average training accuracy
is 98.35% and testing accuracy is 90% for 100 epoch. However this models suffers
from oscillation and has the lowest average testing recall of 89.59%.

Figure 4.16: Testing Precision of for Different Multimodal Concatenation Technique

Feature Concatenation (FC)
When concatenating features, the features are first extracted from the correspond-

ing input modalities. Except for numerical inputs, the feature extraction layers are
distinct for each input modality. Two-dimensional convolutions with varying convo-
lution sizes are used in this experiment to extract image features. For comparison
purposes, the feature layers are identical for each of the modalities. The LSTM is
used to extract audio features, while the Fitbit’s numeric features are passed into a
fully connected layer. These layers were then concatenated to create a single layer
with 1024 neurons. Prior to the final output layer, a dense layer with 256,256,64
neurons with ReLU activation is used. The output layer is identical to the previous
one; the activation function is a sigmoid. From the epochwise training, maximum
testing accuracy of 98.7% and F1-Score of 98.93% is achieved. The average training
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Figure 4.17: Training Precision of for Different Multimodal Concatenation Technique

and testing loss for this methods are 0.12 and 0.27 (fig: 4.15).

Figure 4.18: Testing Recall of for Different Multimodal Concatenation Technique

Feature Concatenation with Attention(FCA) Similar Multimodal networks
as (HC) feature extraction with only one extra attention layers is also applied to see
its effect on the Multimodal systems. With 512,256,64 three shared hidden dense
layer, dropout of 0.25% and batch normalization,4.16 this model achieved an testing
accuracy 98.7% with F1-Score of 98.63%. The average testing accuracy for this model
were only 88%, lowest in all of experimented multimodal architectures.

Feature Concatenation with Selective Dropout(FCSD) Same neural net-
work structure as FC has been utilized for model with selective dropout. This network
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Figure 4.19: Training Recall of for Different Multimodal Concatenation Technique

performs better than all the other models. The feature were concatenated from re-
spected model first. Then the proposed selective dropout is applied. Which will
reduce the dependencies on a specific modality. Though the dropout layer can ran-
domly drops any connection from previous layer, limiting an specific modality in
batch train results with better training. With four shared hidden dense layer4.18,
this model achieved an testing accuracy 99.7% with F1-Score of 99.56%.

4.7 Discussion

From each of the models stated above most them has a very high accuracy, F1-
Score for bot testing and training aspects. From a single value they are not very
far apart. But in terms of performances output concatenation, feature concatenation
with attention models suffers severely from fluctuating results. That can be due
to the fact that the batch size for all these run is quite small as 16 and random
dropout or without drop out layers make this models to be trained with out one
specific modalities. Thus whenever that type of modality data is significant for the
classification , the model testing result can drop nearly to zero.Which is a cause of such
accuracy,recall,precision and F1 Score fluctuations. Another fact is that the model
is relatively large compared to 1900 data points taken for this experiments.With a
larger dataset this problem can be removed, although data from all these modalities
are not wide available. Selective drop out layer in the results of 4.11 reduces some of
these problems, it also suffer from the same type oscillation initially. This dataset also
trained using single classifiers such CNN for eye scan path and facial data and LSTM
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Figure 4.20: Comparison of performance metrics among Multimodal classifiers

network for the audio data. Figure 4.20 depicts a bar chart comparing the testing
accuracy for multimodal classifiers with single label classifiers.Though it should be
mentioned that all of these classifiers can be run extensively for fine tuning.

58



CHAPTER V

Conclusion and Future Work

5.1 Conclusion

The early and accurate detection of ASD enables early intervention and medical
treatment, significantly lowering the risk. ASD is a broad term that encompasses a
variety of psychological deficits that vary by individual. As a result, detecting autism
has become more difficult by taking into account all possible physical and psycho-
logical problems. We compiled and analyzed a large number of ASD symptoms in
this article and then converted them into a scenario-based questionnaire. A survey
was conducted using a questionnaire to collect data. We collected physiological and
video data from ASD patients and recorded their videos in order to extract addi-
tional modalities such as eye tracking, facial imaging, audio features, and behavioral
practice. Fitbit, a smart watch, is used to track medical data such as heart rate and
calories burned and can also be used to manage ASD pateints. By extracting these
into these in formations and implementing multimodal models, we were able to obtain
a satisfactory result that demonstrates how this type of data concatenation can result
in improved ASD classification.

5.2 Limitations

Diverse types of ASD patients are in short supply for data collection. Though the
initial questionnaire-based dataset contains five distinct types of ASD participants,
the final dataset contains only 71. Due to the fact that ML models require a large
amount of data, more precisely, the small dataset size is a significant limitation of this
study. Again, when implementing a multimodal strategy, all modalities are initially
required for each data instance. Due to the fact that the dataset may contain fewer
modalities based on participants, this is another limitation of the dataset. Multimodal
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classification suffers from the same issue as the previously mentioned questionnare,
namely a small dataset size. Additional research is required to ascertain the robust-
ness of multimodal ASD classification.

5.3 Future Work

The primary future goal of this study is to expand the data sets and conduct
additional comparisons with existing research. Because there are numerous types of
neural networks, fine tuning can be done indefinitely in the future to determine the
optimal network combinations. Due to the fact that the proposed method is based
on multimodal data, it can be applied to other domains that require multiple input
factors for proper recognition.
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