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Abstract—With the growing popularity and quick develop-
ment of cloud storage technologies, an increasing number of
enterprises are beginning to migrate their valuable data to
cloud storage platforms. However, cloud storage is limited and
digital data is growing exponentially, cloud service providers
need to ensure storage efficiency but in contrast, they also
need to ensure high availability and reliability which incurs
storage costs. Furthermore, the problem is exacerbated if the
storage server saves multiple copies of the same data without
an effective technique for detecting and eliminating duplicates.
This can significantly increase storage space usage while also
wasting network bandwidth. In this paper, we have proposed
a cloud storage scheme that simultaneously achieves storage
efficiency, security, reliability, and high availability. Our scheme
first ensures specific fault tolerance by creating subsets of data
blocks and then dispersing these subsets to optimum servers while
ensuring data deduplication. To ensure high availability we have
proposed several algorithms that create erasure coding style data
partitions and dispersal while also maintaining duplications in
multiple server scenarios. We have also proposed an intermediate
processing system that handles security and reliability for the
client devices while also minimizing query complexity in cloud
servers. Both theoretical and experimental results show that the
system can achieve high fault tolerance for single, group, or
public users with file or block-level deduplication by using a
less storage scheme.

Keywords: Security, Reliability, Authentication, Deduplica-
tion, Merkle Tree, Erasure Coding.

I. INTRODUCTION

In this big data era, cloud computing provides a revolu-
tionary mechanism for data owners to share their outsourced
data with authorized users in which enterprises, hardware, and
software designs and procurements are shifting. Customers
expect to be able to use on-demand cloud services at any time
as the amount of data in the cloud grows, while providers must
maintain system availability and handle a significant volume
of data. Providers want a method to drastically reduce data
volumes to save money while maintaining massive storage
systems

Data deduplication allows CSPs to store a copy of data
while deleting duplicate copies, achieving the objective of
saving storage space and network bandwidth [1]. But this
approach can lower availability and reliability, the most funda-
mental cloud services. In cloud computing, redundancy is the
best way to ensure that our data is accessible, safe, and secure
regardless of what happens to individual servers. Therefore, we
must maintain redundant data to assure increased availability.

The cost of storage can, however, go up if there is too much
redundant data. So deduplication increases storage efficiency
while redundancy is kept to increase availability. So, our goal
is to find a solution where we can balance the degree of
deduplication and redundancy to design an efficient, highly
reliable storage system.

Data redundancy is used in a cloud storage system to
intelligently distribute data among clouds. As a result, the
redundant data distribution method is crucial for storage avail-
ability, storage efficiency, and effectiveness. Data recovery
from a subset of clouds has been made possible by reliability-
enhanced technologies (such as replication or erasure coding),
even if the other clouds are inaccessible. RACS [2] uses RAID-
like techniques which are used by the disks and file systems
at the cloud storage level that can transparently spread the
storage load over many providers. RACS lowers the one-
time cost of changing storage providers in return for more
communication overhead. By utilizing techniques adopted
from the cryptographic and distributed-systems communities,
HAIL [3] uses e Proofs of Retrievability (PORs) as building
blocks that depend on a single trusted validator to maintain
file integrity and availability across a number of servers or
different storage providers. NCCloud [4] employs regenerating
codes to tolerate cloud failures with significantly less storage
overhead while maintaining the same level of data redundancy
and storage requirements as traditional erasure codes (e.g.,
RAID-6). While the previous three methods are all based on
the erasure code or the network code, DuraCloud [5] uses
replication to duplicate user data to multiple distinct cloud
storage providers to improve availability. Furthermore, it guar-
antees that all copies of user material are synced. However,
consumers must pay more for the increased bandwidth and
storage space that DuraCloud needs. DEPSKY [6] also uses
the replication strategy to improve availability by combining
the Byzantine quorum system protocol and cryptographic
secret sharing. HyRD [7], first integrates erasure coding with a
replication strategy which is different from these approaches,
and tried to achieve storage efficiency with high availability
guarantee. However, his design does not remove duplicate data
blocks on the network.

According to workload research carried out by Microsoft
[8] [9], and EMC [10] [11] suggests that about 50% and
85% of the data in their production primary and backup
storage systems, respectively, are redundant. According to IDC
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research [12], about 80% of the organizations assessed were
considering data deduplication technology in their storage
systems to remove duplicate data and therefore boost storage
efficiency and lower storage costs. Douceur [13] proposed
convergent encryption as the first solution for secure and
effective data deduplication. This concept developed a variety
of wide uses, with numerous methods based on convergent
encryption being deployed or planned [14] [15].

Recent research, such as RACS [2], HAIL [3], NC-
Cloud [4], DuraCloud [5], DepSky [6], and HyRD [7],
show that replication-based schemes are more performance-
friendly for ensuring improved availability and reliability, but
deduplication-based schemes [14] [15] are more cost-effective.
Because unwanted redundancies cost money, enterprises would
profit greatly from client-side data deduplication before out-
sourcing their data to the cloud. To overcome this issue, DAC
[16] combines a replication technique to save data blocks
with a high reference count and erasure codes to store the
remaining data blocks across various cloud storage providers.
It uses fixed-size blocks with SHA1-based or MD5-based hash
computing algorithms but this scheme lacks security and is
vulnerable to attackers as they didn’t use any encryption pro-
tocol. They also failed to mention the exact working procedure
of how the chunking algorithm, erasure coding scheme, server
selection, and effective data structure for working deduplica-
tion. So, we have found the following question that should be
addressed to achieve a storage efficient highly reliable cloud
system. RQ1: Can we create a balance between deduplication
and redundancy that can achieve storage efficiency and higher
availability simultaneously? RQ2: Can we create a rating
mechanism during data dispersal that can choose the best
server among all available servers to keep duplication as low
as possible? RQ3: Can we create optimum grouping of blocks
while reducing data servers in such a way that faul tolerance
in maximized?
Since the existing algorithm for each task works independently
and inversely related to each other, the balance required to
ensure both deduplication and redundancy for storage effi-
ciency and higher availability, which is the most crucial part
of the solution that has yet needed to be solved. Besides,
during data dispersal to multiple storage servers, an optimal
server selection mechanism is needed to choose the best
servers among all to ensure user-defined redundancy. Thus, in
this article, we propose several algorithms for ensuring fault
tolerance, including optimum subset creation from data blocks
and redundancy factors and selecting appropriate servers based
on rating calculation. We have also proposed data structures,
dispersal, and restoration algorithms to ensure data deduplica-
tion with inconsistency checks and security.

Objectives. Our research aims to present a distributed
storage solution that combines security, higher availability, and
storage efficiency.

Contributions. Following are the main contributions of our
work:

• We propose a novel secure deduplication strategy that
successfully reduces duplication at both the file and block

levels while assuring user-defined availability and greater
fault tolerance in multiple redundant server scenarios.

• We propose a novel algorithm that may select several
optimal servers from a pool of maximum assigned servers
to provide user-defined redundancy. We arrange distinct
data blocks into subsets in this approach to guarantee
maximum fault tolerance.

• We propose a custom data structure using an ordered map
and matching algorithm, that can work as a load balancer
by calculating a duplication rating (server load, server
distance, redundancy factor) for each subset to ensure
minimal duplication in redundant servers.

• We provide security analysis and performance evaluation
of our scheme, and the results show that our scheme is
secure and efficient.

The rest of the paper is organized as follows: In Section
II, we review some preliminaries and cryptographic primitives
along with a few well known security algorithms and proto-
cols. In Section III, we describe our system model. In Section
??, we present our proposed scheme in detail, followed by
theoretical performance analysis and experimental evaluations
in Section V and Section VI respectively. We present some
related work in Section VII. Finally, we conclude the paper in
Section VIII.

II. PRELIMINARIES

A. Convergent Encryption and Deduplication

Convergent Encryption is a cryptographic operation that
produces an identical ciphertext from duplicate files. A conver-
gent key generated by computing the cryptographic hash value
of the data’s actual content is used by a CE scheme to encrypt
or decrypt the data copy. If a user wants to upload duplicate
data, the server discards the data and returns an ownership
pointer to the uploader. When storing deduplicated data, CE
seeks to provide data confidentiality by encrypting a message
F using a message-derived key K. A convergent encryption
system can be described formally as follows:

1) KeyGenCE(1k, F ) → KC : A randomized cryptogra-
phy key generation algorithm requires a security param-
eter together with a message F as input and generates a
convergent keyKC ;

2) EncryptC(KC , F )→ C: A randomized symmetric key
encryption process utilizes the convergent key KC and
the message file F as input and outputs the ciphertext
C;

3) DecryptC(KC , C) → F: This decryption technique
uses the convergent key KC as well as the ciphertext
C, and outputs the original plaintext file F;

B. Merkle Hash Tree

Merkle hash tree is a type of hash-based data structure
that is used to authenticate digital data while requiring less
computation and communication cost. Every internal node in
the structure stores a hash value that is the concatenation of
the internal node’s left and right children’s hash. We divide a
file into blocks, couple the blocks, then hash each pair with a
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collision-resistant hash function to create a Merkle tree. The
hash values are again paired off and each pair is further hashed.
This procedure is repeated until there is only one hash value
left. The Root of the tree is the last single hash value.

C. Hashmap

Data structures with indexes are hash maps. When creating
an index with a key into an array of buckets or slots, a hash
map uses a hash function. The bucket with the relevant index
is linked to its value. The key is distinct and unchangeable.
Implementing a hash map relies primarily on hash functions.
It accepts the key and converts it to the bucket index from the
key. A separate index should be generated via ideal hashing
for each key. But crashes can happen. We may easily utilize a
bucket for multiple items by adding a list or by rehashing when
hashing yields an existing index. Dictionaries are an example
of hash maps in Python. Hash maps include the following
functions:

1) SetV alue(key,value): A key-value pair is inserted into
the hash map. This function updates the value if it’s
already there in the hash map;;

2) GetV alue(key): If there is no mapping for the given
key in this map, this method returns ”No record found”
or returns the value to which the given key is mapped;;

3) SetV alue(key): Deletes the mapping for a certain key
if it is present in the hash map;;

III. SYSTEM MODEL AND DESIGN PRINCIPLES

A. System Model

Our proposed system consists of the following three entities
as illustrated in Fig 2.

Fig. 1: System Model

Cloud Users. Cloud Users is the data owner of the files.
Cloud users (also known as group members) are authorized
users of the cloud. When they initially connect to the system,
they must register with the index server. They can upload
and download their own outsourced data by providing proof
of ownership. Cloud users can be a total of 3 kinds: public,
group, and private users. Group User: A standard key will be
generated for all group users though they can have a different
key, a keygen algorithm will yield the same CE key. So, we
assume that they will not have any collision. Public User: For
the public user, they upload a file using their own encryption
key which is generated from the data. Private User: A private
user gets a unique key and acts like a group itself.

Index Server. Index Server is responsible for system pa-
rameter generation, user registration and revocation. Before a
file or a block of a file is outsourced to the cloud, it stores the
corresponding file and blocks authentication tags. An Index
Server (IS) communicates with the user and cloud server. An
IS distributes data chunks to multiple cloud servers based

on redundancy. The other task includes data deduplication
check, file index management, and record and maintenance
of abnormal events.
Assumption 1: The cloud server cannot be trusted, but the
index server can. Users can submit the primary file to the
IS unencrypted in a trusted situation. The file is then used
by IS to create blocks and subsets before being sent to the
cloud server. It is impossible for any attackers to obtain the file
since the data blocks are randomly distributed among several
cloud servers based on the redundancy factor and only IS
preserves the user file. To ensure more security, users can
upload encrypted data to the IS.

Assumption 2: IS and Cloud Server are both unreliable.
In this scenario, users will create blocks and encrypt them on
their end before uploading cipher data to the IS. However, as it
serves as the convergent key, users must save the hash value of
each block to his/her end. This may increase the computation
overhead but will ensure security and reliability.

Cloud Server. The CS provides data storage services with
extensive storage backup facilities for its client on a pay-as-
you-go basis over the internet. A CS would like to delete
duplicate files to minimize its storage cost. On the other hand,
a single file will be stored on more than one CS to ensure
higher availability.

IV. DEDUPLICATION IN REDUNDANT SERVER - DRS

In this section, first, we define several aspects, structures,
and functionality of the proposed DRS system, which will
be later utilized by various user-level operations to perform
Read, Write, update and delete operations. Deduplication is
used to reduce data redundancy, whereas redundancy is kept to
ensure the higher availability of cloud services. In this system
there are several key components that transform the user data
into block-sized duplication checked redundant services. These
components include some custom data structures to keep track
of users, files, and data servers, a data processing system
for fragmentation and tag generation, optimum subsets of
data, and server selection. The main working procedure is as
follows:
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Fig. 2: DRS system Dataflow
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A. System Initialization

Notation Table:

Notation Description
Uid User Id
Ma Memory allocation
DSid Data server Id
AV L Availability
IS Index Server
Fj Files
Fid File id
Hk Hashing
DB Data Block

DBCon Concatenated Data Block
HCon Concatenated Hash

MHTroot Merkle Hash Root
KCE Convergent Key
Cy Ciphertext

Smax Maximum allocated servers
Sopt Optimum servers
divsi Divisors

AV LSpace Available Space
Sl Server List
Rf Redundancy Factor

DBss Data Block Subset
Hss Hash Subset
HDB Hash of Data Blocks
DD Deduplication
DP Dynamic Programming

The system is initialized with parameters for the client,
index server, and data server..

Data Server Construct: Data Server (Ds) has a separate
but defined number of memory allocation (Ma) with unique
Identification (DsID), with another property that determines
the availability (AV L) of that server. When the data server is
online, only the Index Server (Is) can access this information

Client/ User (property) in his class: User will also be initial-
ized with a unique ID (Uid). Each member of the same group
is given a user id, which is used to construct the convergent
key. User Registration: First, users will register with an Index
Server. Then IS will give a group key to its registered users
in a similar group. A user can be register without any key.
Authentication: A challenge-response protocol between user
and cloud server. Authorization: Each user is provided several
degrees for read, write, update and delete.

B. Data Structure

The Index server additionally keeps track of a collection
of information regarding users, data servers, and previously
uploaded data in addition to the characteristics stated in the
initialization section. We have presented three data structures,
primarily based on hash maps, to access them in the shortest
amount of time feasible.

User-File Users (U) is a complex unordered map structure
consisting of several User (Uid) which contain several files

Algorithm 1: Data Processing: (F,DBs)
input : F,DBs ▷ file and block size
output: < Hk, DBi > ▷ tags and blocks

1 Kc ← KeyGen(seed); ▷ group key
2 Kce ← Hash(Kc); ▷ convergent key
3 Cy ← Encrpyt(Kc, F );
4 < DBi > ← Fragment(Cy, DBS);
5 for each DBi ∈ < Bi > do
6 Hk ← TagGen(DBi); ▷ Tag for blocks

(Fj). Again for each file, lists of hash (Hk) are arranged in a
particular order so that, a sequential read of hashes eventually
creates the targeted file. Each user has a unique ID (Uid) which
is used as the key of Users (Ui), where the data section consists
of several unique (Fj). Thus any hash can be accessed by
querying the user’s data structure with U − id, Fid, and Hk

in O(1) time, where to access the file just need to specify the
Uid and Fid. Similarly, any number of Uid, Fid, or Hk can be
inserted and replaced or deleted in constant time complexity.
To add a new Uid, there must be no similar Uid in the existing
structure which is also true for Fid, although Hk does not
require that same criterion because many files can consist of
the same data blocks which result in the same hash.

Data Server The data server (DS) is a similar unorder
data structure residing in the index server, to keep track of
the data server available and used memory address (Ma),
where multiple servers (DSi) is identified with a unique key
(DsIDi). In each DSid, a boolean list is created with the
corresponding memory location (Maj) as key, whereas is
boolean value True or False delineates whether the memory
address is available or not. When a new DSi is initialized, all
of the memory addresses are added on the respective DsIDi

by keeping the availability True. A new data server can be
added to data server structures although the Memory location
can not be added or deleted.

Hash Map Our Hash Map (HM) is a really simple but
effective unorder map structure with a hash(Hk) as key, where
each Hk is authentication and also a general purpose tag for
Data block (DBi). For each Hk several pairs of (DsIDj),
Maj can be assigned to describe the exact memory location
and server identification for data retrieval. Since each data is
saved on multiple servers, from any Hk we can determine
whether it exists or the corresponding data blocks need to be
updated. Any number of DsIDj , Maj pair can be added,
replaced, or removed from corresponding Hk in O(1) time
complexity for one operation.

MHT Construct To verify the system’s integrity, we build
a Merkel Hash Tree (MHT) using our structure. First, we use
the Merkle tree technique to create a Merkle root MHTroot
from file F . The user then determines whether or not the root
matches his stored root. If a match is found, the user may
be certain that the integrity of his or her file has not been
compromised; if not, they can notify the service provider.
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C. Data Processing

Key Generation: As we use convergent encryption, the
key will be generated by hashing the file itself. We use the
symmetric AES encryption technique so that the same key will
be used for encryption and decryption.

Encryption/decryption: After the key is generated from the
file, we will apply the padding operation to fragment the data
into fixed-size blocks. Then the file will be encrypted using
AES 256 symmetric cryptography algorithm. As we are using
convergent key, same data will return the same ciphertext.
enc(m) = E(H(m),m)

Fragmentation: Data is fragmented into data blocks(DB)
based on the block size (DBs) specified. The number of data
blocks will be len(data)/DBS .

Tag Generation: We will generate an authentication tag for
each block by hashing the block using the SHA256 algorithm.
We also keep a file tag by keeping the hash of the entire file
to imply a file level integrity check.

D. Data Redundancy

1) Optimum Servers and Subsets: Since blocks can be send
to any number of available DS, the exact number of optimum
servers from max-user-server and fixed redundancy is needed
to calculated.

Algorithm 2: GetServerList(N, {Smax})
input : DBN , {Smax} ▷ number of blocks and

maximum available server list
output: {Si}, Sopt ▷ list of available servers and

number of optimal servers, respectively

1 {divsi} ← 1;
2 size ← sqrt(DBN ) + 1;
3 for i← 1 to size do
4 if DBN mod i == 0 then
5 if i <= length ({Smax}) then
6 {divsi} ← i;

7 if DBN/i <= length({Smax}) then
8 {divsi} ← DBN/i;

9 Sopt ← max({divsi});
10 {Si} ← init();
11 for i← 1 to Smax do
12 AV LSpace ← Available(i);
13 if AV LSpace >= DBN then
14 {Si} ← i;

15 return {Si}, Sopt

Problem Definition: Given a list of all servers (SL) for
any particular user, with number of total data blocks (N) for
specific file and redundancy factor ( R) find out the optimum
number of servers(S) that can used to store these blocks.

Lemma 1: Since N data needs to equally distributed among
S server, N must be divided by S, in other words S must be
divisor of N. Proposition: The largest value of S when lemma

1 is fulfilled, which is less then the number of maximum server
(Smax) should be the optimum answer.

Proof : , Let divsN is the set representing the divisors of
N. Then,

S = Max(divsi < Smax) (1)

is the largest possible value of S that satisfied the lemma 1
and less than maximum possible value of S. Thus the largest
possible number of servers (S) will ensure the maximum
distribution of data which in turns maximize the fault tolerancy
which is the optimum result in this case. To find out the
divisors (Ndiv), the algorithm of sieve prime factorization can
be used, where we can check all the number (X) from 1 to
SQRT(N)+1 to find out if that number divides N or not. If
X divides N then both X and N/X are both divisors of N
(Algorithm: 2 line 1-8). Then we can use Eq1 to find out the
Optimum number of server S. After that Sopt server ID will
be chosen from Smax based on availability (line 10-14)

2) Maximum fault tolerance subset: Data blocks may have
several combination of subset, in this section how to do that
in most efficient way.

Problem Definition (Application): N Data with R copies
need to be stored in S servers. What is the most efficient and
Fault Tolerant way to do that?

Assumption (Application): If we can spread data evenly
among servers, that could reduce the points of failure. The
length of data sent to each server must be the same to produce
that even distribution.

Problem Definition (Mathematical): How to make an S
number of fixed size subset from N numbers, where each
number occurs precisely R times?

Observation and proposition: Let’s choose the length of
the subset as L. For simplicity, also constraints that L is less
Than N is size.

Then there could be Sub= NCL possible subsets, and from
them, we need to choose an exact S where the summation of
occurrence of each number is strictly R. So the number of
possible combinations is Sub(C) S. Now for any N, that’s an
NP-hard problem to calculate: Lets Choose N= 1000, L=500
Then, sub= NCL = 1000C500= 2.70288E+299 Now we have
Sub(C) S Choice= (2.70288E+299)C(100) = Uncountable in
modern computer

Corollary: As a combinatorics problem producing this
massive number of subsets, memorizing(DP) and combining
them in problem-defined ways is NP.

Lemma 1: Since we need to distribute N numbers with R
redundancy, total numbers are N*R

Lemma 2: Since we need even distribution, i.e., the length
of each subset is equal, then (N*R) must be divisible by S.

Lemma 3: For any arbitrary value of S, N, R, there are
two scenarios possible and impossible. That is, there are some
cases where even distribution or equal subsets are impossible
to make.

Lemma 4: For any arbitrary value of S, N, R, the Possibility
can be checked by (N*R)%S==0. (3 line 4-5) Otherwise, S can
be chosen from the set of the proper divisor of (N*R). This
will remove the checking steps.
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Postulate : Place 1 to N numbers, then repeat R times
sequentially, take only (N*R)/S numbers at a time (3 line 10-
11). That will result in exactly S subsets. (Here S, N, and R
are chosen such that they fulfill lemma 1-4)

Proof : To prove the optimality of the solution we have
to fulfill two separate conditions. First, each data block must
occur exactly R times. Since the whole data is copied the
exactly R time, so each of the data blocks must occur exactly
R times in a concatenated state which will be DBCon (3 line
7-9). Similarly < H > will be also concatenated as HCon.
Secondly, two or more same data blocks must be placed at
the highest distance possible, thus two same blocks may not
be placed in one subset. If two or more same data blocks are
placed in one subset, then by losing one subset, that part of
the data is lost, which will reduce the fault tolerance. Since
there are N data blocks, and they are arranged sequentially,
so the maximum distance between two same data can be N,
which is achieved in this solution.

Algorithm 3: FTSubset({DBi},{Hk},Sopt,R)

input : {DBi}, {Hk}, Sopt, R ▷ blocks, tags, #
optimum servers and redundancy factor

output: {HSS},{DBSS} ▷ subsets of tags and
blocks

1 size ← length({Hk});
2 DBCon[ ] ← init();
3 HCon[ ] ← init();
4 if ((size × R) mod Sopt) ! = 0 then
5 return “Error”;

6 ssz ← (size × R)/Sopt; ▷ subset size
7 for i← 1 to R do
8 DBCon.Add ({DBi});
9 HCon.Add ({Hk});

10 for j ← 0 to (size × R) do
11 {DBSS} ← DBCon[j : j + ssz];
12 {HSS} ← HCon[j : j + ssz];

13 return {HSS}, {DBSS};

E. Rating Calculation

DBss subsets of data blocks need to be distributed in Smax
data servers where DBss <= Smax, where two subsets can
not be assigned to the same data server (DS) to assure fault
tolerance, for each SDBi select DSi that maximizes the overall
Score

Duplication Matching For each data block DBi in DBss

subsets, the corresponding tag or hash (Hk) is also calculated
in the data processing section (Tag Generation). Again, (4
line 1-6) for any Key Hk, Hashmap (HM ), gives the server
ID (DsIDi) and memory location (MAj) pairs to retrieve
the data block (DBi) of (Hk). The unavailability of Hk in
HM also can query in O(1) time. For each Subset DBSSj ,
duplication for each data server DSi is calculated and stored

Algorithm 4: Rating(< HSS},< S,ei})
input : {HSS},{Si} ▷ tags subset, Servers list
output: {HSS , DBSS} ▷ subsets of tags and blocks

1 < DP}, < DD} ← 0;
2 for each Hsi ∈ < HSS} do
3 for each Dj ∈ < Si} do
4 < DDHsi,Dj} ←

< DDHsi,Dj}+findLocation(Hk ∈
Hsi);

5 < RCHsi,Dj} ← Available(Dj);
6 < Sl,Qs,Dis}Hsi,Dj ← GetVal(Dj);

7 < Ri,j} ← WeightedRating(< DDi,j},
< RCi,j}, < Sli,j},< Qsi,j},< Disi,j} );

8 for each i ∈ < HSS} do
9 for each j ∈ < Si} do

10 < DPi,j} ← < Ri,j} +
findMax(DPi+1,j+1, DPi+1,j−1)

11 < DSi} ← PathPrint(< DP});
12 return < DSi};

in tabular form, where the DBSSi’th row and DSi’th column
represent the duplication for corresponding DBSSi and DSi.

Other Factors From DS structure in any IS, the number
of True value that is available storage in any DSi can be
counted to measure how much storage any DSi have available,
similarly by counting the false value, used storage space can
also be calculated. Available free space for each DSi can be
calculated by counting the availability from IS. Other factors
such as server load, server distance, and bandwidth have been
set as constant for each DSi since the test environment does
not comply with those requirements.

Weighted Rating Weighted final rating (4 line 7) can be
computed by taking the weighted sum of all of the scoring
criteria. For the system, the constant that would be multiplied
with each criterion is set as a decreasing geometric series,
such that the first criterion contains the most weight in
scoring. Since these criteria can vary depending on system
requirements ie: some systems might require higher weight
on server load than it can be placed first.

TotalScore = RS×a+SL×b+QS×c+D×d+RC×e (2)

where deduplicated Redundancy Score = RS , Server load =
SL, user-specified query size = QS , Distance = D, Remaining
Capacity of the server = RS . Here a,b,c,d,e Can number from
series like alpha ∗ (1/2)x or any arbitrary number.

The total rating forms a Rating[Subset][servers] size 2D
matrix where each of the Rij represents the rating for sending
ith subset to jth data server and 0 < i <= number of
subsets(SSn), 0 < j <= number of data servers(DSn). To
get the combination with maximum score, lets assume DP(i,j)
= max(0 to i, 0 to j) + Rating(i,j) + dp(i+1,j+1) or dp(i+1,j-1).
The time complexity evaluation of the recurrence is O(SSN ∗
DSn). That is there are SSn ∗ DSn states where we have
take the maximum pairs only once.Thus we calculates all
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of the ratings for server and subsest and memorize that on
DP(SSn, DSn) table (4 line 8-10). To find out the optimal
server i for each subset j, then we need follow the path for
maximum value of dp[0][0], which that path will eventually
give unique i,j pairs such that each i and j will be only ones.

F. Data Dispersal

When a user wants to upload a file F , there can be two
scenarios: i) the file is being uploaded for the first time, or ii)
the file has already been uploaded by another user from the
same group.

First Upload. To write any file, the user first takes an
Authentication key using the key generation function, then
encrypts the data using CE with AES. The encrypted data
is sent to the index server (IS) with Uid, Fid with some
optional parameters like the Redundancy Factor Rf , maximum
server {DSmax}, etc. The IS authenticates Uid and checks if
it has any write privileges or not. Then IS invokes a check
to find if that Fid exists or not. If it exists then the update
method takes over, otherwise it is sent to the fragmentation
and tag generation process to partition the data into data
blocks DBn and create corresponding Hash Hk. Then based
on the length of DB and maximum data server (DSmax)
allocated for the user, the number of optimum servers (DSopt)
is calculated using algorithm 2. DSopt, DBi, Hk, and Rf are
used by the subset creation algorithm 3 to make the optimal
subsets (DBS) that maximize the fault tolerance. Here subsets
fulfill three conditions, 1) same data block placement ensures
maximum distance such that two same blocks never occur
in one subset. 2) the number of subsets strictly equal to
the number of optimal servers. 3) In all subsets each block
occurs exactly at Rf time. Then Rating calculation is invoked
(algorithm 4) with DBS , Hk, and DSopt to find out which
subset should be sent to which data server. Rating calculation
takes several factors: duplication, server storage, server load,
etc using eq:2, and creates an overall weighted sum of rating.
Then for each DBi, one DSi is selected such that all of
the DBi have different DSi and the overall combination
maximizes the total rating. Thus now we need to send each
DBi to the DSi by checking if Hk is already in the hash map
(HM ). Then IS finds out the empty memory location (MAj)
for that DSi and requests DSi with MAj to store DBi. Then
IS Store DSi,MAj pair with key Hk in HM , update the
data server map by making MAj address unavailable, and
also store Hk in user map for further recreate the file. If sever
IS is involved in the process all of them update their internal
data structure similarly.

Update Users who want to update their file must first initiate
four fundamental data processing processes (key generation,
encryption, block creation, tag generation). After that, the
Index server will find the updates that need to be done by
users. IS will achieve this by comparing old and new block
hashes and saving the differences in an array called diffhash.
Following that, the write function is invoked, and data is stored
depending on the redundancy factor and optimal server rating
calculation. After completing the write operation, the data

Algorithm 5: FirstUpload(F,DBS)
input : F ,DBS ▷ File and blockSize
output: < Hk, DBi > ▷ tags and blocks

1 < DBi, Hk > ← Data Proccessing
(< Hk >,< DBi >);

2 < Si >, Sopt ← GetServerList(DBN,
< Smax >);

3 < HSS , DBSS > ←
faultTolerantSubset(< DBi >,<
Hk >,Sopt,R);

4 < DSi > ← Rating(< Sn, S, Stotal >);
5 for each < DBi, Hk > do
6 < isDupi > ← HashMap(< Hk >);
7 if < isDupi >=TRUE then
8 return blockPointer(Hk);

9 < MAj > ←Check Availability(DSi);
10 Upload(DBi,MAj,DSi);
11 DataServer[DSi][MAj]←True;
12 Update Hash Map;
13 Insert Tag in User File;

server’s availability status will be adjusted so that data subsets
are distributed to all servers and overwrite is avoided. The
index server will then need to update the new subset location
in the server as well as the associated server id in the hash
table. Finally, the user table will be updated to reflect the
ownership of new block hashes.

Algorithm 6: Update(F,DBS)
input : < F , DBS > ▷ Hash and blocks
output: < Hk, DBi > ▷ tags and blocks

1 diffhash ←
SetDifference< newhash, oldhash >;

2 for each < Bi, Hi > do
3 < isDupi > ← Duplicate(< Ci >,F);

4 if < isDupi >=TRUE then
5 return blockPointer(Ci);
6 else
7 Check Availability;
8 Upload(Ci,KCi

);
9 Update Availability Status;

10 Update Hash Map;

Data Restoration For a read request, the user requests
the IS with Uid and Fid. Each ISj validate the request, and
using UID and FID find out the sequential Hk from user map
data structure. Then for each Hk, IS read < DSi,MAj >
pair and request DSi to send data stored at MAj location.
Since for each Hk there are several DSi, MAj pair, so several
DBij collected from different DSi. The IS then invoke the
integrity and inconsistency check, where among all DBij
maximum matching DBi is selected. Again from DBi using tag
generation a new tag is generated, and matched with existing
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Hk to check that both of them are same. If both criteria are
satisfied then the DBi is appended to the data. This process
continue for all Hk in FID, and create the whole data from
DBi. The concatenated data is sent to the user, where user can
decrypt and access the original data that was stored previously.

Algorithm 7: Read < UID >,FID

input : UID,FID ▷ User ID, File ID
output: F ▷ Complete File

1 H ← GetTags(UID, FID) ;
2 for each Hk ∈ H do
3 < DSi,MAj > ← LocationOf(Hk);
4 < DBi > ← GetData(< DSi,MAj >);
5 < DBi > ← RemoveNone(< DBi >);
6 DB ← MaximumVote(< DBi >);
7 HDB ← Hash(DB);
8 if DB Not = None and HDB == Hk then
9 Fk ← Add(DB) ;

10 else
11 Fk ← Add("ErrorMsg") ;

12 return F ;

Block-level Deduplication: When calculating and upload-
ing ratings for two instances, the block-level duplication is
checked. The index server keeps track of all the tags or hashes
of blocks that have been uploaded using this index server in
a HM data structure. After completing Algorithms 1,2,3,then
Algorithm 4 checks each of the tags for the < DBi > to
determine the degree of duplication. It does this by utilizing
a HMi, which can check for the presence of any given tag
in O(1) time and return the MAj and SID of that tag. The
< DBi > must be saved if these return values are empty, so
algorithm 5,6 sends that data block to the appropriate server.

File-level Deduplication:
When an Index Server (IS) receives a file upload request,

it first checks to see if the server has the corresponding file
authentication tag. If so, the server considers it a duplicate file
upload request and prompts the user to use the user id to verify
file ownership. If the verification does not succeed, the server
terminates the upload activity of the file since the user is not
permitted to access it. As the block size of our system varies
and is user-defined, if the user sets the block size as same as
the file size, our system can perform file-level deduplication
also in comparatively less time.

V. SECURITY AND PERFORMANCE ANALYSIS

A. Security Analysis:

Confidentiality: On the cloud servers, information is kept
in ciphertext form. Furthermore, they are randomly stored,
making it impossible for a malicious attacker to obtain actual
data from the storage server without knowing the correct
memory location sequence and the matching server id. It
is considered that the Index Server is not necessarily to be
trustworthy. We can say that our design ensures confidentiality

because only Index Server is aware of the server id and
memory sequence and they are regularly auditable.

Authentication and Integrity: We store the hash root of
each file and data block, which can effectively maintain data
integrity and public auditing.

Fault Tolerance: Our system is secure from hackers because
it runs on multiple servers. Our system can withstand attacks
well because data is distributed randomly and encrypted across
a number of servers. In our design, it is always possible to
recover a piece of the data unless all servers are under attack.

Attack Resilience: We may state that our system is immune
to brute force assaults because we implemented Convergent
Encryption with the AES-256 encryption algorithm. Using
brute-force methods, AES 256 is essentially impregnable.
While a 56-bit DES key can not be hacked in a day, with
current computer capability, AES would take billions of years
to crack. Hackers would be unwise to undertake such an attack.

VI. IMPLEMENTATION AND EVALUATION

To implement our scheme, we have built a prototype of DRS
in Google Colab [17] using python language. We use SHA-
256 as our hash function and AES-256 for encryption. We
conduct all cryptographic protocols using the pycryptodome
library. We have a total of four variables to measure our
performances and they are block size, redundancy factor,
file size, and maximum allocated servers. For each test run,
we have fixed any three variables and show the effect of
changing another variable. First of all, in figure 3a, we have
shown the effect of different block sizes where the file size
was 128 MB, the Redundancy factor was set to 3, and we
disperse the data maximum to 40 servers. Then we measure the
performance of upload time, download time, and MHT-based
integrity checking time. As we can see, there is a negative
relationship between file upload time and block sizes whereas
data download time and integrity checking time nearly remain
constant for block sizes ranging from 8 KB to 8 MB. However,
once the block sizes are 32 KB or more, the uploading time
likewise stays fairly consistent. On the other hand, when
file size fluctuates but the other 3 parameters stay the same
in figure 3b, we have seen an increasing tendency. It takes
less than 0.8 seconds to upload, download, and validate the
integrity of a file up to 128 MB, while it takes 11.26 seconds
to upload a 2GB file. For figure 3c, the redundancy level has
been increased from 1 to 8, with a maximum server count of
20. The file size is 128 MB, and the block size is 64KB. As
we can see, redundancy has no influence on download time or
integrity checking time, but it has a nearly linear relationship
with upload time.
According to our simulation, block and file size have no
influence on fault tolerance, but the number of maximum
allotted servers and redundancy factor has an upward tendency
on a system’s fault tolerance. In figure 3d, We raised the
redundancy from 1 to 8 while maintaining the maximum
server count of 20. We discovered that by simply keeping
one copy of data, our system can withstand up to four server
breakdowns, indicating that the system is 20% fault tolerant
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which means data was dispersed to 16 servers out of 20
maximum allocated servers. When we maintain 4 copies of
user data, our system can tolerate up to 16 server failures,
and when we raise the redundancy to 8, only 2 servers out
of 20 can recover the original data, giving the system a
90% fault tolerance. Although this is an upward trend the
relation between redundancy and fault tolerance is logarithmic,
that is the changing rate of fault tolerance reduces when
redundancy increases. A similar trend can be found when we
fixed the redundancy but increased the maximum allocated
servers gradually in figure 3e. We have kept the redundancy at
5 and file size 128 MB and the block size fixed to 32 KB. Then
we conduct the simulation for various file sizes and check fault
tolerance by randomly shutting down a portion of the total
servers. We have found that our system can give 87.5% fault
tolerance when the maximum server is set to 80 which means
our system only needs 10 servers to recreate the original data.
This change percentage becomes nearly flat when we use more
allocated servers like 120, 240, and 400 and the fault tolerance
is 96.88%, 98.05%, and 98.44% respectively.

DRS calculated matching for all blocks for subsequent
upload can also be found in any DBi present among the
current HM . Thus the exact number of matching blocks
depends on the existing files on the IS. For this reason, we
have emptied the full server, uploaded files with different
sizes, then changed the data by a certain percentage and
computed the time for subsequent update operations. Since
the update has separate block-by-block matching, it took more
time than the first write. Figure 3f represents times needed
for a subsequent upload with 1 to 100% changed data, and
for file size 64,128 and 256 MB. The redundancy factor for
this experiment was fixed at 5, block size 32KB, and 20 max
server. The time requires increases with the percentages of
data changes with some fluctuation due to processing power.
Another intriguing pattern is that data upload durations for a
given file ID with 100% change are doubled compared to the
initial upload.

In figure 3g, We have shown the comparison of batch
auditing time between our proposed hash map with MHT. We
have fixed the maximum number of servers to 40 and the block
size to 64KB while keeping the redundancy factor at 3. We put
a challenge to the servers to check the integrity of randomly
chosen 1% data blocks for batch audit and the response time
of the servers is comparatively low in our hash map while it
takes considerably more time with MHT response. The bigger
the file size, the response time is exponentially growing in
MHT-based auditing protocols, while this time is less than
half in our design.

Redundancy, maximum server capacity, file size, and block
size were the four factors that were kept constant in the
studies, while one variable was changed over a range of values.
To comprehend each variable’s impact, computations of time
required and fault tolerance are made for each. Since each
server is mimicked using a different class, our experiment
revealed that the number of servers has no bearing on the read,
write, or upload operation times. However, since they don’t

alter the number of redundant blocks, file size and block size
have no bearing on fault tolerance. Block size has an inverse
relationship with computation time because it affects the total
number of blocks. In contrast, computation time directly corre-
lates with file size because it affects the total number of blocks.
Redundancy only causes an increase in write time because
more duplicate files must be saved in the data server. How
fault tolerance is calculated is the percentage of servers that
can be offline while still allowing for complete data recovery.A
mathematical function was attempted to be combined with
the data by producing more outputs.A mathematical function
was attempted to be combined with the data by producing
more outputs. Fault tolerance and redundancy have related
either inverse exponentially( y = a× x−b) or hyperbolically (
y = a+ x÷ b).

VII. COMPARISON WITH RELATED WORK

Using a Permutation Ordered Binary (POB)-based number
system to split the data into many shares and a CRT-based
secret sharing scheme to distribute the key into random shares,
Sing et al. [18]’s storage scheme performs deduplication. This
solution addresses the single point of failure issue for con-
vergent encryption-based deduplication schemes. This method
transforms important data into shares that appear random and
distribute them across other servers to achieve fault tolerance.
The deduplication process is applied to each of the shares in
this scheme, which does not require a third-party authenticator
but requires a little bit more computation time since separate
shares are produced for each data block. To facilitate dynamic
user management, Yuan et al. [19] provide a secure data dedu-
plication approach with effective re-encryption and a bloom
filter-based location selection mechanism. Convergent all-or-
nothing Transform (CAONT) is used in this strategy, where
bits are sampled at random and data owners are compelled to
re-encrypt a tiny portion of the whole package using CAONT
to lower system communication overhead. The message is
encrypted using an MLE method, and CAONT sends the
ciphertext to packages. The cloud user concatenates the last
256 bits of the package as a collected package with the last 256
bits of the randomly chosen package after creating a file key
with the CP-ABCE algorithm. The cloud user then re-encrypts
the collected package using the file key. The remainder is
then uploaded to the cloud along with the assembled package.
Li et al. [20] proposed a secure client-side deduplication
approach based on Message-locked Encryption (MLE) and
Proof of Retrievability (PoR), in which the client may check
the duplicity of outsourced data by communicating with the
server. This technique provided a dedicated key server to aid
clients in generating MLE keys, which uses a rate-limiting
strategy to restrict the number of quarries of the client during
each epoch to withstand a brute-force attack. To prevent illegal
content distribution, the Bloom filter-based proof of ownership
approach is used. CSED uses the GDH signature rather than
the RSA signature since the GDH signature is shorter and
the communication speed is faster. However, CSED does not
defend against an adversary who impersonates a valid client in
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order to receive the right answer values to the cloud server’s
challenge.

Yuan et al. [21] propose a batch auditing scheme with a
secure deduplication scheme that can guarantee data consis-
tency by implying additional consistent detection mechanisms.
This approach substitutes TPA with a blockchain mechanism
that automatically pays customers through a smart contract,
whose data integrity is compromised, to ensure fair arbitration
and removes the random masking in data auditing. But, this
scheme works for the Ethereum blockchain only and does not
support user revocation. Li et al. [22] propose a blockchain-
based public auditing scheme that removes the TPA by storing
the lightweight verification tag on the blockchain on the user
side and generating proof by constructing MHT using the
hashtag. To generate evidence during the auditing phase, the
Data Owner (DO) must first ask a public auditor (another
DO from the blockchain network) to create an MHT utilizing
all of the DO’s hashtags that are recorded in the blockchain.
Then DO challenge the CSP in a message. For the DO in
the cloud, the CSP creates the hashtags for the encrypted file
blocks, and after that, it returns the evidence to the DO by
building an MHT with the produced hashtags. The DO then
verifies that the evidence produced by the CSP corresponds
to the proof provided by the public auditor. Neelima et al.
[23] proposed an Adaptive Dragonfly Algorithm (ADA) based

load-balancing task scheduling scheme that can solve NP-hard
optimization problems to ensure effective resource utilization
in cloud computing. This multi-objective load balancing ap-
proach can provide minimum time and cost while can assist
in moving work away from overburdened VMs and assigning
them to underloaded VMs. They assign multiple tasks to
different virtual machines using their proposed load balancing
algorithm and illustrate better performance in completion time,
processing cost, and load. The cost-based allocation (CBA),
a technique for allocating resources that comply with data
availability from redundancy models while taking into account
the minimal availability level required by the user, is suggested
by Goncalves et al. [24]. The system consists of a number of
allocation algorithms that compute allocation costs and select
the lowest-cost option. However, this system’s recovery time
after failure is not ideal. To solve replication issues and cloud
storage governance, John et al. [25] offer a novel dynamic
data replication approach based on the intelligent water drop
(IWD) algorithm, which considers criteria such as bandwidth,
user access, available storage space, and traffic. This approach
clones the data based on the number of accesses or the data’s
popularity. The technique can increase storage efficiency by
more than 40% over the traditional scheme. However, data
restoration is a challenge for this storage design. Xue et
al. [26] presented an AD-KP-ABE key policy attribute-based
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encryption technique for cloud data deletion that uses the MHT
and attribute revocation primitives to accomplish fine-grained
access control with verifiability. When a user wishes to delete
a file, the attribute is changed by re-encrypting a portion of
the ciphertext, guaranteeing that data is safely erased. This
approach utilizes the MHT where the cloud server generates
new roots following attribute revocation to validate target
deletion. Although verification of deletion is obtainable in this
system, a trustworthy third party is required.

VIII. CONCLUSION

In this paper, we have proposed DRS, a deduplication
scheme in a redundant servers scenario. DRS ensures storage
efficiency while keeping high availability and reliability by
using our custom hashmap with convergent encryption. Our
proposed algorithm can choose the best servers from a pool
of maximum servers that have been assigned, allowing for
user-defined redundancy while minimizing duplication. Our
custom data structure, which employs a matching algorithm,
can produce a server rating and also employs an index server,
which also serves as a load balancer to maintain a balance
between redundancy and duplication. Implementation of DRS
demonstrates that our scheme is efficient in computation and
communication overhead also. We measured our performance
using four criteria (maximum servers, redundancy factor, block
size, and file size), and we also compared our design to MHT
which shows that our scheme is efficient and takes less time
than MHT in all scenarios. Besides, both file-level and block-
level deduplication is achieved in our design while ensuring
batch auditing to check the integrity of dispersed data. The
security and performance analysis of our system reveals that it
is effective in terms of storage efficiency as well as reliability.
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