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Abstract

Classification and segmentation of brain tumors are critical for analyzing tumors and determining treatment options based on their
classifications and appearance. Magnetic Resonance Image (MRI) is considered to be the mainly employed mechanism for viewing
brain regions. The tissue contrast is normalized in MRI and it is regarded as the most compliant imaging technique for modeling the
territory of attention in the brain, such as tumors. This paper describes a unique deep Convolutional Neural Network (CNN) strategy
for the automatic classification of brain images into 4 classes (glioma, meningioma, pituitary, no tumor), as well as a U-net-based
segmentation model. A total of six datasets (Dataset a, Dataset b, Dataset c, Dataset d, Merged dataset 1, Merged dataset 2) were
used to test the classification model, and the segmentation was performed on a manually segmented dataset. Merged dataset 1 was
manually segmented for classification purposes in order to compare classification performance by segmenting vs non-segmenting
MRI images. The proposed classification model’s performance is also compared to five transfer learning methods (VGG16, VGG19,
ResNet152v2, EfficientNet B0, and EfficientNet B7). The proposed classification model outperforms other existing models in all
six classification datasets due to its outstanding performance. The segmentation model is further evaluated using dice coefficient,
dice loss, jaccard index, binary cross entropy dice loss, loss, recall, and accuracy metrics. For Merged dataset 1, the resulting
masked images are also compared to the ground truths. Two approaches to classification were evaluated, one with segmented MRIs
sent to the classification model and the other with the MRI pictures passed without segmentation, and their comparison was based
on accuracy, recall, precision, and AUC. Merged dataset 1 has the greatest classification accuracy of 98.7%. The same classification
model obtained an accuracy of 98.8% on the segmented Merged dataset 1 by delivering segmented MRIs to it. Dataset c achieves
the greatest classification accuracy of 97.7% among the 4 individual datasets.
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1. Introduction

All of the functions in the human body are governed by the
human brain, which is one of the most sophisticated processes
in the body and this dominant organ consists of billions of neu-
rons. The most frequent kind of brain disease is a tumor in the
brain. In this kind of cancer, which is deadly, prompt and pre-
cise, diagnosis of brain tumors is critical [1]. The majority of
primary Central Nervous System (CNS) cancers are tumors in
the brain accounting for 85 percent to 90 percent of all cases.
In 2020, about 308, 102 persons worldwide are supposed to be
detected with a spinal column or primary brain tumor [2].

It is caused due to abnormal and unregulated increase in
brain cells’ number [3]. There are more than 150 different
forms of brain tumors thought to exist. They are categorized
into two major groups: primary tumors and metastatic tumors.
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Primary tumors are those that arise in the brain tissue or
surrounding the brain. Primary tumors have been further
divided into benign (noncancerous) and malignant (cancerous)
categories. Metastatic tumors spread to the brain through the
blood circulation after growing in other regions of the body
(such the breasts or lungs). Meningiomas are a common kind
of benign tumor (almost over 30%). Benign tumors in the
brain can occasionally be life-threatening. Meningiomas, for
example, can occasionally develop into malignant tumors.
Meningiomas are slow-growing, benign (noncancerous) tu-
mors that make up around 85% of all cases. Meningiomas
are more frequently diagnosed in women than in men. They
have a good probability of being surgically removed since
they seldom disseminate to the adjacent brain tissue. Pituitary
tumors originate in the pituitary glands and these glands govern
hormones and physiological processes. Pituitary tumors are
noncancerous tumors that do not spread to other organs.
Although the majority of the benign type tumors are pituitary
that seldom progress to cancer. Pituitary tumor problems can
result in long-term hormone insufficiency as well as eyesight
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loss. Tumor cells that are malignant are abnormal cells that
increase uncontrolled and irregularly. Normal tissues can be
compressed, infiltrated, or destroyed by these tumors. The
most prevalent variety of malignant brain tumors are noted to
be gliomas. Gliomas make for about 33% of all brain tumors.
They can rarely develop to the spine or other body organs, but
they can develop quickly and can invade healthy tissues in the
surrounding area [4].
The conventional practice for segmenting tumor areas is
manual segmentation. Nevertheless, it is exorbitant, exhaust-
ing, and prone to inter-observer variability [5]. As a result,
automated tumor segmentation [6] is favored, especially when
dealing with massive amounts of data and the need for constant
tumor observation and pliable treatment planning. Anyway,
due to the wide range of tumor sites, forms, and architectures,
effective automated tumor segmentation is typically difficult
[7]. Deep learning models have been explored for the purpose
of brain tumor detection over the recent years. MRI of
brain tumors are used as the datasets for its high quality and
non-ionizing radiation properties.

Due to the significant contributions that deep learning
models may make to this topic, some of the pertinent papers
have been extensively covered in this section.

Mohsen et al. accomplished a Deep Neural Network (DNN)
classifier integrated with Principal Component Analysis (PCA)
and Discrete Wavelet Transform (DWT) for categorizing MRIs
in 4 classes [8]. Images were segmented using the Fuzzy
C-Means (FCM) clustering. Though they performed classi-
fication with a very small dataset of 66 brain MRIs. Özyurt
et al. implemented a method to categorize brain tumors as
malignant or benign using a hybrid Neutrosophic Set – Expert
Maximum Fuzzy-Sure Entropy Convolutional Neural Network
(NS-EMFSE-CNN) classification technique. A comparison
that was carried out for two classifiers gave an accuracy of
95.62% by Support Vector Machine (SVM) [9]. However, they
only classified tumors as benign or malignant, no particular
tumor type classification has been carried out.

Sajid et al. devised a method that implemented a hybrid
CNN with 2 path CNN and 3 path CNN using a patch-based
technique considering local and contextual information [10].
Glioma tumor regions are segmented using a patch-based
approach. They segmented tumors into Higher Grade Glioma
(HGG) and Lower Grade Glioma (LGG), but no classification
is performed. Emrah Irmak put forward a model for classifying
brain MRIs with Deep CNN and grid search optimizer-tuned
hyper-parameters with the motivation to build three different
models for the classification of tumors [11]. Though their
second model which classifies tumors into five classes achieved
less accuracy 92.66% compared to the other two models.

In a specific study, an approach offered using the CNN archi-
tecture for classifying brain MRIs into three distinct groups and
distinguishing in different glioma grades [12]. Nevertheless,
the dataset used for distinguishing glioma grades is smaller and
must be evaluated on a bigger group of datasets. In the paper
proposed by Havaei et al. [13], the CNN is a two-pathway
architecture that is capable of extracting local features along
with global features of the brain tumors concurrently. In the

two training phase, the CNN base output is fed again into the
CNN subsequently. However the architecture is required to
be observed on large datasets for efficiency of handling huge
MRIs.

Badza et al. introduced a CNN approach to classify tumors
in three classes: meningioma, glioma, and pituitary. Four
evaluating approaches have been utilized by aggregating two
databases and two 10 cross-validation approaches [14]. Both
the 10 fold record and subject-wise cross-validation approach
has been used on the original and augmented images for
evaluation. In the paper by Amin et al. they divided the
input image into N number of patches and using a pre-trained
CNN model, the core pixel of each patch is calculated then
combining all the predicted results. They classified the tumor
into HGG and LGG with different tumor region. They claimed
the average processing time is only 5.02 second [15].

An automated deep multi-scale 3D CNN is recommended by
Mzoughi et al. [16]. Their proposed architecture may combine
lower weight global and local contextual information. However
they classified the tumor into two subclasses of glioma (HGG
and LGG). Siar et al. proposed a strategy that used ImageNet
feature extraction model . Their model showed good perfor-
mance on a first order clustering algorithm and CNN softmax
fully connected layer has been devised to distinguish fat tissue
and tumor tissue which increased accuracy [17]. Though no
specific tumor type categorization has been performed; only
benign or malignant tumors have been classified. Mustafa R.
Ismael combined the statistical characteristics derived from
the 2D DWT and 2D Gabor extraction methods separately for
feature extraction. In order to categorize three different forms
of tumors, the features were fed to a traditional neural network
trained by backpropagation.

A generic CNN was implemented by Irsheidat et al. MRI
inputs were opened in grayscale mode and augmentation
made the dataset fourteen times larger from the initial size.
The model predicted the presence of a tumor or not with an
accuracy of 96.7% and 88.25% in validation and test data
respectively[18]. Though they simply did a binary classifi-
cation and used a smaller dataset to test their model. Ayadi
et al. came up with a CNN model that included multiple
layers to classify brain tumor MRIs into meningioma, glioma,
and pituitary [19] utilizing three publically available datasets:
Figshare dataset, Radiopaedia dataset, and REMBRANDT
dataset for comparison with the previous work.

Naser et al. incorporated a deep learning strategy in which
CNN hinged on U-Net for segmenting tumor affected regions.
A transfer learning VGG-16 model and classifiers has been
developed to grade cancerous tumors. No independent dataset
was available to compare with for testing and a moderately
small LGG data has been used for validation [20]. Never-
theless, only glioma tumors have been categorized as LGG
and HGG. Shahzadi et al. used a CNN based 3-D medical
image classification cascading with Long Short Term Memory
(LSTM) to identify LGG and HGG. [21]. They utilized
VGG-16 for feature extraction and LSTM for the classification
of glioma. Because they employed a small number of samples
and didn’t apply any data augmentation techniques to expand
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the number of samples, their model has lesser accuracy than
other research.

Noreen et al. implemented two separate multi-level archi-
tectures using Inception-v3 and DenseNet201 architectures
with softmax classifier. In these pre-trained architectures,
features are extricated from various modules and percolate
through the softmax layer for classification after concatenation
of the extracted features [22]. The Super Resolution- Fuzzy
C Means (SR-FCM) technique has been proposed by Özyurt
et al. in tumor detection [23]. Features were extracted from
SqueezeNet architecture and then Extreme Machine Learning
(ELM) classification technique was performed. Anyway tu-
mors are mainly divided into benign and malignant categories
in their work.

A method based on the Resnet-50 from CNN was proposed
by Ahmet Çinar and Muhammed Yildirim [24]. The endmost
five layers of the model are eliminated, and eight additional
layers are inserted as a substitute. However, the type of tumor
was not characterized, only binary classification has been
implemented. A CNN of 22 layers is proposed for categorizing
lung cancer into five categories [25]. Navid Ghassemi proposed
a Generative Adversarial Network (GAN) based model where
a deep CNN is used as the discriminator for detection of
fake images that are generated by the generative model and
a pre-trained CNN network is fine-tuned to perform as a
classifier. The input size was limited to 64 × 64 on account
of some GAN restrictions which retrains the application of a
few well-performed architectures as the discriminator since the
larger input size is a prerequisite [26].

A new method in deep learning features, as well as a fusion
of hand-crafted for brain tumor detection, was established by
Saba et al. [27] where input images went through segmentation
employing the GrabCut algorithm. The incorporated VGG-19
with Histogram of Orirnted Gradients (HOG) and Local Binary
Pattern (LBP). In the end, multiple classifiers are used for
the classification. Between glioma and healthy brain images,
the classification is limited. Ahamed et al. developed a deep
learning approach for detecting covid-19 cases using chest
CT scans and X-ray pictures [28]. An end-to-end automatic
incremental CNN was proposed by Naceur et al. for the
segmentation of tumors in which they implemented deep
learning models entitled 2Cnet, 3Cnet, and EnsembleNet using
their proposed training strategy [29]. The EnsembleNet is an
integrated model of the 2Cnet and 3Cnet taking into account
ensemble learning. Though the model is solely suitable for the
segmentation of MRIs. Aurna et al. also used the ensemble
technique to classify brain MRIs [30].

A study by Chelghoum et al. involved exploiting nine
pre-trained CNNs namely ResNet-50, AlexNet, VGG-16,
ResNet-101, GoogleNet [31], VGG-19, ResNet-18, SENet and
ResNet-Inception-v2 for comparative analysis [32]. However,
all the models have been implemented over a single dataset.
Nawab et al. made use of block wise VGG-16 network centered
on transfer learning and fine-tuning [33] to classify MRIs as:
glioma, meningioma, and pituitary. The model went through
minimal preprocessing procedure and does not utilize any of
the handcrafted features.

A segmentation approach employing a CNN was imple-
mented followed by an extensive data augmentation strategy
by Sajjad et al. to classify multi-graded brain tumors[34].
Due to the small-scale datasets, the segmented data has been
augmented using eight different types of data augmentation
strategies including various geometric transformations and
noise invariances. Finally, data has been passed through the
pre-trained VGG-19 model for classification. Elazab et al.
devised a model named GP-GAN, which predicts the growth
of glioma tumors at an early stage using stacked 3D GANs
[35]. Using a 3D U-Net architecture, this model’s generator
was created. It is important to note that GP-GAN was used in
this study which presupposes that tumors would always grow.
In addition, the shrinking tumors as a result of treatment are
not taken into account in the method.

Hamghalam et al. [36] used a multistage attention-GAN
to increase the contrast of the tumor image. In their work,
tumors are segmented as whole tumors, tumor core, and
enhancing tumor portions. The High Tissue Contrast (HTC)
synthetic image takes a significant amount of time to generate
27ms. Due to the multistage architecture of their models, the
computational complexity and number of parameters rise as
the number of Regions of Interest (ROI)s increases. Rezaei
et al. gave out a conditional Generative Adversarial Network
(cGAN) approach for segmentation into three distinctive
sub-regions namely the whole tumor, the core tumor, and the
enhancing tumor region with different labels that are used
further to evaluate the survival days of patients after tumor
diagnosis [37]. Their model learned a loss that makes it
efficient to work on unseen data. Han et al. designed a model
to detect brain metastases at desired position using Progressive
Growing of GAN (PGGAN)s and a highly rough bounding
box [38]. They divided the image into smaller regions and
tried to predict the bounding box and achieved great sensitivity
in tumor detection by working on random shape rather than
appropriate segmentation, spontaneously at desirable positions
and sizes. But they failed to achieve high sensitivity by adding
more synthetic images.

Mohamed et al. employed Near Infrared Imaging (IR)
mechanism for detecting brain tumors with a size of less than
3mm (random arbitrary value) that couldn’t be detected using
Computed Tomography (CT) or MRI scans. They sent the
thermal information via WSN [39]. It is shown here that the
feature vector, Gray Level Co-occurrence Matrix (GLCM),
SVM, statistical features, and Back Propagation Neural Net-
work (BPNN).
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Table 1
Recent research using deep learning for the classification and segmentation of
brain tumor MRIs.

Ref. Contribution Limitations
Mohsen et
al. [8]

Accomplished a DNN classifier
integrated with PCA and DWT
for categorizing tumors into 4
classes. MRIs were segmented
using the FCM clustering

Classified a very
small dataset of 66
brain MRIs

Özyurt et
al. [9]

Implemented a method to cat-
egorize brain tumors using a
hybrid NS-EMFSE-CNN clas-
sification technique. They ac-
quired an accuracy of 95.62%
by SVM

No specific tumor
type classification
has been carried
out

Sajid et al.
[10]

Devised a method that imple-
mented a hybrid CNN with 2
path CNN and 3 path CNN
using a patch-based technique
considering local and contex-
tual information

Segmented MRIs
of HGG and
LGG and no
classification was
performed

Emrah
Irmak [11]

Put forward a model for
classifying brain MRI images
with Deep CNN and grid
search optimizer-tuned hyper-
parameters with the motivation
to build three different models
for the classification of tumors

The second model
achieved less accu-
racy compared to
the other two mod-
els

Sultan et al.
[12]

Offered an approach of using
the CNN architecture for classi-
fying brain MRIs into three dis-
tinct groups and distinguishing
in different glioma grades

The used dataset is
smaller and must
be evaluated on a
bigger group of
datasets

Havaei et
al.[13]

Proposed a CNN which is a
two-path architecture that is ca-
pable of extracting local fea-
tures along with global fea-
tures of the brain tumors con-
currently

Required to be
observed on large
datasets for effi-
ciency of handling
huge MRIs

Irsheidat et
al. [18]

A generic CNN was imple-
mented which predicted the
presence of a tumor or not
with an accuracy of 96.7% and
88.25% in validation and test
data respectively

A binary classifica-
tion is performed
and used a smaller
dataset to test their
model

Naser et al.
[20]

Incorporated a deep learning
strategy in which CNN hinged
on U-Net for segmenting tu-
mor affected regions. A trans-
fer learning VGG-16 model and
classifiers has been developed
to grade cancerous tumors

No independent
dataset was avail-
able to compare
with for testing and
a moderately small
LGG data has been
used for validation

Ahmet
Çinar et al.
[24]

A method based on the Resnet-
50 from CNN was proposed,
The endmost five layers of the
model are eliminated, and eight
additional layers are inserted as
a substitute

Only binary clas-
sification has been
implemented

Table 1 (continued)

Ref. Contribution Limitations
Han et al.
[38]

Designed s to detect brain
metastases at desired position
using PGGANs and a highly
rough bounding box

Failed to achieve
high sensitivity by
adding more syn-
thetic images

Naceur et
al. [29]

An end-to-end automatic incre-
mental CNN was proposed for
the segmentation of tumors in
which they implemented deep
learning models entitled 2Cnet,
3Cnet, and EnsembleNet using
their proposed training strategy

The model is solely
suitable for the seg-
mentation of MRI

Elazab et
al. [35]

Devised the , which predicts the
growth of glioma tumors at an
early stage using stacked 3D
GANs

Presupposes that
tumors would
always grow and
the shrinking
tumors as a result
of treatment are not
taken into account

produce a better output than other methods. They did segmen-
tation for a 2D image which would lose some information. Irfan
et al. employed pre-trained Inception-v3 for extracting the fea-
tures which were then incorporated with Dominate Rotate Lo-
cal Binary Pattern (DRLBP) for superior texture analysis [40].
The feature vectors were optimized employing the Particular
Swarm Optimization (PSO) algorithm and classified using soft-
max classifier. The following are the article’s major contribu-
tions:

• A classification model for tumor MRIs multiclassification
has been proposed and evaluated on four separate individ-
ual datasets and two merged datasets that are the compos-
ite of these individual datasets. The classification model
was tested against 5 pre-trained models.

• A segmentation model that accepts input MRIs and cre-
ates masked pictures has been suggested. Although the
model was trained using a manually constructed mask
from Merged dataset 1, it can also produce masks for other
datasets.

• In terms of performance metrics and time, a deep discus-
sion has been held between the performance of the effect
of segmentation before sending the MRIs to the classifica-
tion model.

• Merged dataset 1 has been manually segmented with ex-
pert assistance and consists of a large number of images
divided into four groups (glioma, meningioma, pituitary
and no tumor)

The rest of the paper is structured as follows: Section 2 in-
cludes a comprehensive review of all datasets and techniques,
including information on single, merged, augmented, and seg-
mented datasets, data preprocessing, and classification and seg-
mentation methods. Section 3 details the results as well as the
additional training and validation methods. Finally, the conclu-
sion is appended in Section 4.
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2. Datasets and Methodology

The datasets have been utilized in accordance with the classi-
fication and segmentation methods. Data has undergone prepro-
cessing steps. And also while doing the data augmentation, cer-
tain preprocessing techniques are used. Over the classification
datasets, both the suggested model and pre-trained architectures
have been employed. Two scenarios are taken into consider-
ation, the first in which the classification is done without the
segmentation being done first. And in the second method, seg-
mentation is followed by sending the MRIs to the classification
model. Sending the segmented MRI to the classification model
minimizes computational complexity and processing time since
segmentation only extracts the tumored portion of an MRI. Fig-
ure 1 illustrates the workflow of the proposed methodology.
Comparing the classification performance of trained and sug-
gested models using a variety of metrics, as well as the per-
formance of segmentation model, are done. Finally, the two
methods of classifying tumors while segmenting them and clas-
sifying them without segmentation are compared.

2.1. Classification datasets

A total of four individual datasets have been outlined, and
two combinations of these datasets have been integrated to cre-
ate two new merged datasets. As a result, our work has been ap-
plied to a total of six datasets (four individual and two merged
datasets). The four datasets are referred to as Dataset a, Dataset
b, Dataset c, and Dataset d throughout the paper. Merged
dataset 1 and Merged dataset 2 will be used to refer to the two
merged datasets respectively.

2.1.1. Dataset a
There are 3064 T1-weighted Contrast Enhanced (CE)-MRI

images in this dataset. The images are taken from 233 pa-
tients having three types of tumors: meningioma (708 slices),
glioma (1426 slices), and pituitary tumor (930 slices). This
dataset has been widely used in most research papers [12, 14,
19, 22, 32, 33]. The data was gathered from Nanfang Hospital
in Guangzhou, China, and General Hospital, Tianjin Medical
University in China between 2005 and 2010. The dataset is
made publicly available in [41].

2.1.2. Dataset b
This dataset comprises 3264 T1, T2 and Fluid-Attenuated

Inversion Recovery (FLAIR) MRI images. The images are
split up into two directories: training and testing. Glioma,
meningioma, pituitary, and normal brain MRI are the four sub-
classes in each directory. Glioma (100 slices), meningioma
(115 slices), pituitary (74 slices), and no tumor (105 slices)
are all included in the testing directory. Glioma (826 slices),
meningioma (822 slices), pituitary (827 slices), and no tumor
(395 slices) are all listed in the training directory. The dataset
is publicly available in [42].

2.1.3. Dataset c
This dataset includes a total of 10000 images of 3 classes of

tumor MRIs and MRIs with no tumor. There are glioma (2500
slices), meningioma (2500 slices), pituitary (2500 slices) and
MRIs with no tumor (2500 slices). This dataset is also publicly
available at [43].

2.1.4. Dataset d
There are a total of 4292 images in this dataset. The dataset

is made publicly available at [44]. The dataset is divided into
two directories: training and testing. Each of these two di-
rectories contain four subclasses of glioma, meningioma, pitu-
itary and no tumor. There are glioma(1038 slices), meningioma
(1318 slices), pituitary (1255 slices) and normal brain MRIs
(681 slices).

2.1.5. Merged dataset 1
This dataset combines Dataset a and Dataset b. Glioma,

meningioma, pituitary, and normal brain MRIs will all be in-
cluded in the combined dataset. Because the number of nor-
mal brain MRIs is low in comparison to the other three classes,
Normal brain MRIs have been taken from this dataset [45]. The
dataset [45] includes MRIs of normal and tumor-affected brain
tissue. As a result, the Merged dataset 1 contains a total of
7022 images. Glioma (1621 slices), meningioma (1645 slices),
pituitary (1757 slices), and normal brain MRIs (2000 slices) are
included in the Merged dataset 1. The dataset is available at [].
The sample images from this dataset is shown in Figure 4a.

2.1.6. Merged dataset 2
The Merged dataset 2 has been created by combining the

Merged dataset 1 with dataset c and dataset d. As a result,
this Merged dataset 2 combines all four datasets used in our
work (Dataset a, Dataset b, Dataset c, and Dataset d) along with
the dataset [45] having normal tumor images. Glioma (5159
slices), meningioma (5465 slices), normal brain MRI (5181
slices), and pituitary MRI (5512 slices) are all included in this
dataset.

2.2. Augmented Merged Dataset

MRI images for 4 classes, glioma, meningioma, no tumor,
and pituitary, are contained in the Merged dataset 1, which
is splitted into two folders to train and test. The amount of
images in the testing and training folder for every class is not
equal. In the event of training, each tumor class has 5000
images, but in the event of testing, each class contains 1000
images. So the Augmented Merged Dataset contains 24, 000
images. Because the dataset comprises images of varied sizes,
they have been shrunk in the augmentation stage to a constant
size of 256 by 256. Rotation, zooming, height and width
shifting, shearing, horizontal flipping, and mode filling are
the preprocessing methods employed while augmenting the
MRI images. To keep maximal features in the images, the
settings for rotation, zooming, shifting, and shearing have
been modified for different classes of tumor in the training and
testing folders. It also includes augmenting the dataset such
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Datasets
1 Classification 

Dataset a  
Dataset b
Dataset c 
Dataset d

Merged Dataset 1, 
Merged Dataset 2
Augmented Merged Dataset 1

Segmentation

Dataset 1,  
Dataset 2

Preprocessing
2 Rotation

Zooming
Shearing
Height & Width Shift 

Image Resizing
RGB to GrayScale
Unsharp Masking
Sobel Filter

Horizontal Flipping
Mode Filtering

MRI Segmentation
3 Manual Tumor Segmentation of Merged Dataset 1

 

U-Net Model Design, Fine tuning and Training to Generate Masked
Image from MRI 

Classifier Train & Tuning
4 Pretrained Model

EfficientNetB7
Resnet152v2

VGG16
VGG19
EfficientNetB0

Proposed
Classification
Model

Tumor Classification
5 MRI’s are classified into four classes

Glioma
Meningioma

Pituitary
No tumor

Model Comparison
6 Segmentation Result & Comparison

Classification Performance Comparision
for with/without segmentation
Comparision with State of the art Models

Effect of Augmentation
Effect of Datasets for 
proposedModel
Classifier Model Comparision

Figure 1 The suggested methodology’s workflow entails the selection of the dataset, MRI preprocessing, MRI segmentation,
models shown for classification, MRI classification classes, and ultimately results analysis over the findings.

that it has 80% of images for training the model whereas 20%
for testing and validation.

2.3. Segmentation dataset

Merged dataset 1 has been manually segmented because
Merged dataset 1 contains MRIs from four different classes. As
after the MRIs have been segmented, they will be forwarded to
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MRI 
Datasets

Augmentation

PreProcessing

Proposed Model

Transfer Learning
Models

Segmentation

Tumor 
Classification

Glioma

Meningioma

Pituitary

No Tumor

Masking, model design and training

Figure 2 The classification technique depicted schematically, with MRIs segmented,preprocessed before passing them to proposed
classification model and transfer learning models.

Dataset a

Dataset b

Dataset c

Dataset d

Merged Dataset 1

Merged Dataset 2

Augmented Merged 
Dataset 1

0 2000 4000 6000

Glioma Meningioma Pituitary No Tumor

Figure 3 Dataset distribution for classification includes four individual datasets (Datasets a, b, c, and d), two merged datasets
(Merged Dataset 1 combines three datasets, and Merged Dataset 2 combines Merged Dataset 1 and Datasets c and d).

a classification model where they will be divided into four cat-
egories: pituitary, glioma, and meningioma and no tumor. Four
individuals manually segmented the MRIs of the four classes.
The MRIs are inspected with an expert present before being
segmented. For each MRIs, four individuals create four mask
images. Then the masked MRIs have been provided back to the
expert. Out of the four masks, the expert selects the one that is
closest and then makes the required corrections. A correspond-
ing generated mask exists for every MRI. The example images
from this dataset are shown in Figure 4b.

2.4. Data preprocessing

Image resizing, RGB to grayscale conversion, unsharp mask-
ing, and sobel filtering [46] are some of the preprocessing tech-
niques that have been used to the images.The MRIs are down-
sized to the size of 160 × 160 × 3 in the preprocessing stage.
They are transformed to grayscale using weighted average ap-
proach, which reduces its dimension to 160× 160× 1. Unsharp
masking with a radius of 100 pixels is applied to the grayscale
MRI. Then the MRIs are subjected to the sobel filter.
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(a)

(b)

Figure 4 (a) Sample images from Merged Dataset 1 where MRIs are from four classes named: Glioma, Meningioma, No Tumor
and Pituitary. (b) Segmentation dataset sample images where images with correspondong masks are generated manually.

2.4.1. Weighted average method
The equation representing the grayscale weighted average, Y

Y = 0.299 × R + 0.587 ×G + 0.114 × B (1)

In equation (1), R, G and B are integers with values ranging
from the 0 to 255 that indicate red (R), green (G) and blue (B).

2.4.2. Unsharp masking
Unsharp masking is a versatile and strong technique for im-

proving image sharpness. A lower radius adds smaller-scale
detail by affecting the size of the edges to be enhanced or the
width of the edge rims. Threshold determines how much of a
brightness shift will be sharpened. Blurred image is subtracted
from original MRI, which is referred to as unsharp masking
algorithm. An unsharp or blurred image is created by spatial
filtering the original image using a Gaussian low-pass filter.

2.4.3. Sobel Filter
A basic 3 × 3 convolution is used in sobel filter. Seperation

of the sobel kernels is an additional optimization option. It is
designed to operate on first order derivatives. It computes the
MRI’s first derivatives individually for the X and Y axes.

2.5. Classification models

A pre-trained model is a model that has already been trained
on the ImageNet data set to perform a certain job. Since Ima-
geNet includes 1000 classes, the pre-trained models have been

taught to handle a wide range of tasks. It takes less time and
effort to create the architecture of a model that has already
been trained. As the classification models, five pretrained archi-
tectures have been used. The pretrained architectures include
VGG16 [47], VGG19 [47], EfficientNet B0 [48], and Efficient-
Net B7 [48], ResNet152v2 [49]. The pretrained models are
shown in Figure 6. Along with the pretrained models, a pro-
posed classification methodology has been also been presented.
Figure 7 shows the proposed model for classification.

2.5.1. VGG16
VGG16 is extensively applied convolutional neural network.

This has achieved a lot of appeal in the research because of
its straightforward methodology and the fact that pre-trained
weights were publicly available online, allowing new tasks to
be fine tuned in a simplest way possible. VGG16 has 16 con-
volutional layers and is well-liked for its relatively consistent
architecture. 5 maxpooling layers, 2 fully connected layers,
and 1 softmax layer make up the architecture in addition to the
convolutional layers. For classification, a flatten layer, 2 batch
normalization layers, 1 dropout with the dropout rate of 25%,
and 2 dense layers are substituted for the fully connected layers
and softmax layer in the modified VGG16 architecture shown
in figure 6a, which accepts input of size 160×160.

2.5.2. VGG19
One of the VGG [47] architectures, VGG19, has 16 convo-

lutional layers, 5 maxpool layers, 3 fully connected layers, and
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Figure 5 Input MRIs are preprocessed before being sent into the classification model and preprocessing methods are used during
augmentation too.

1 softmax layer. The modified VGG19 architecture is made up
of these convolutional and max pooling layers, and the fully
connected layers and softmax layer are replaced with 6 layers
that are arranged as flatten, batch normalization, dense, dropout
layer with a dropout rate of 25%, and finally a dense layer to
classify MRIs into four classes. Figure 6b depicts the modified
architecture that has been tailored for MRI classification.

2.5.3. EfficientNet B0
In order to maximize accuracy and floating-point calcula-

tions, the researchers used a multi-objective neural network
search to create EfficientNet B0 [48]. EfficientNet B0 to Effi-
cientNet B7 have been developed using B0 as a baseline model,
and they have attained the highest level of accuracy on Ima-
geNet while being significantly more efficient than its rivals.
There are 237 layers in EfficientNet B0. To classify MRIs us-
ing modified EfficientNet B0 architecture, the flatten, batch nor-
malization, dense, batch normalization, dropout layer with a
dropout rate of 25%, and lastly a dense layer have been added.

2.5.4. EfficientNet B7
EfficientNet B7 [48] is a convolutional neural network that

makes use of compound coefficient for the uniform scaling of
width, height and resolution. The scaling technique of Efficient-
Net B7 invariably and systematically enlarges the dimension
of the network and resolution with a series of predefined scal-
ing coefficients. Though in standard practice these factors are
adjusted arbitrarily. There are 813 layers in EfficientNet B7.
In the modified EfficientNet B7 architecture, the flatten, batch

normalization, dense, batch normalization, dropout layer, and
finally a dense layer have been integrated to the base Efficient-
Net B7, and the input size is also taken into consideration to be
160 × 160 in this case.

2.5.5. Resnet152V2
ResNet [49] has become a game changer because it effi-

ciently and considerably trains deep neural network. ResNet
operate on the premise of building deeper networks than con-
ventional simple networks while also determining the opti-
mal amount of layers. These residual networks may get ac-
curacy from far more depth and are simpler to tune. Before
Resnet152V2, training operation for deep neural network was
tough for vanishing gradient problem. The Resnet152V2 has
564 layers in all. The modified Resnet152V2 design adds 6
extra layers to the basic Resnet152V2 architecture shown in 6c.

2.5.6. Proposed classification model
Figure 7 shows the classification model that has been pro-

posed. The model comprises 39 layers with two blocks between
the input and output layer. The output layer predicts MRIs as
glioma, meningioma, pituitary or no tumor. The input image is
processed via convolution layers, activation functions followed
by the convolutional layers which are used for selecting the
features, maxpooling, batch normalization, and dropout layers.
Dropout layers are employed to prevent overfitting. To forecast
the output, the dense layers and softmax layer are utilized.

The first layer provides information about the input size. The
input MRI size to the model is 160 × 160. Following that is
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Figure 6 Pretrained architectures incorporated in this work, (a) Modified VGG16, (b) Modified VGG19, (c) Modified
ResNet152V2

the convolution layer. A convolutional layer is operated by per-
forming a convolution operation on the original image and the
kernel. In the scenario of a 2D convolutional layer employs a
number of filters, with the kernel moving horizontally or ver-
tically over the image in a given number of steps known as
strides. The filter size for the convolution layer in between input
and the first block is 3× 3 with 32 filters. After the convolution
layer a maxpooling layer is added with a pool size of 2×2. The
maxpooling layer is used to downsample the image. Maxpool-
ing is used to discard less significant data while simultaneously
addressing the issue of overfitting. After the pooling layer, the
batch normalization and dropout layer (dropout rate 25%) is
added.

The architecture of the two blocks in the model is identical,
with the exception that the first block uses 64 filters while the
second block uses 128 kernels. Each of the blocks has 3 paths.
Each path has a distinct kernel size for the convolution layers,
which is 1 × 1, 3 × 3. For the max pooling operation, a 2x2
kernel is utilized, and one of the three pathways has a dropout

layer added with a 25% dropout rate. The paths guarantee that
layers are applied at the same level. To make the model wider
rather than deeper and to lessen the computing complexity of
the model, layers with varying kernel sizes are used at the same
level. The three pathways each extract a different set of features
which are then combined at the end of each block.

Two convolution layers with 5x5 and 3x3 filter sizes are in-
tegrated between the second block and the output layer. An
additional maxpool layer with a 2x2 filter size is added after the
convolution layer. Then the dense layers, dropout, flatten, and
batch normalization are included. The dropout rate for the latter
two layers is 50 percent. Dropout layers are introduced to speed
up the training process. The dense layer is followed by softmax.
The dense layer’s output is delivered to the softmax activation
function. The softmax activation function is used to calculate
the relative probabilities of having a certain type of tumor. The
proposed model enables 2, 051, 872 worth of parameters to be
trained.
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Figure 7 The proposed classification model which consists of 39 layers and includes two blocks, classifies MRIs into four classes:
Glioma, Meningioma, No Tumor and Pituitary.

Table 2 The descriptions for each layer in Proposed classification model
having two blocks and total of 39 layers.

Block
No.

Layer name Layer
count

Filter
count

Filter size

Convolution 1 32 3×3
Maxpooling 1 2×2
Batch Normalization 1
Dropout 1

Block 1
Convolution 4 64 1×1, 3 × 3
Maxpooling 3 2×2
Batch Normalization 3
Dropout 1

Block 2
Convolution 4 128 1×1, 3 × 3
Maxpooling 3 2×2
Batch Normalization 3
Dropout 1

Convolution 2 128 5×5, 3 × 3
Maxpooling 1 128 2×2
Batch Normalization 1
Dropout 3
Flatten 1
Dense 3

2.6. Hyper parameters for proposed classification model
A lot of trial and error is required when tuning the hyper-

parameters. While the model is being trained, these hyper-
parameters act as controls that may be changed. It is determined
what these hyper-parameters should be set at in order to achieve
the optimum results. The the number of layers, neurons, op-
timizer, input and output activation functions, batch size, the
number of epochs and loss function have all been taken into
consideration as model hyper parameters.

Adaptive Moment Estimation (Adam) [50] is chosen as the
optimizer. When dealing with complex problems requiring a

lot of data or factors, this strategy is incredibly effective. And
this strategy uses minimal memory also. In Adam, for a specific
iteration (t) moving averages are dependent on the parameters:
exponential decay rates for the first moment and second mo-
ment estimates which are denoted by β1 and β2 respectively,
and gradient (gt). Equation (2) represents the bias correction
formula for moving averages’.

p̂t =
pt

1 − βt
1
, q̂t =

qt

1 − βt
2

(2)

In Equation (2), p̂t and q̂t represents first and second moment
vector respectively. Then the weights and biases are updated
accordingly. In order to find the best parameter configuration,
the suggested model uses the Grid Search technique. All con-
ceivable parameter combinations are tested using grid search.

The output layer uses softmax for multi classification while
the hidden layers employ the Rectified Linear Unit (ReLu) [51]
activation function. equation (3) and equation (4) represent
ReLu and Softmax activation functions respectively.

f (x) = max(0, x) (3)

S o f tmax(xi) =
exp(xi)∑
j exp(x j)

(4)

In equation (3), any negative input causes the function to re-
turn 0, while any positive value x causes it to return that value.
As a result, it generates an output whose range is 0 to infinite.
In equation (4), the values from the output layer’s neurons are
represented by the x. The non-linear function is represented by
the exponential. After being normalized, these values are de-
vided by the total of exponential values and then transformed
into probabilities.

The batch size is fixed at 64 and the epoch number is 100.
Categorical cross entropy have been used for multi classifica-
tion. This loss is an excellent indicator of how easily two dis-
crete probability distributions may be distinguished from one
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another. Equation (5) denotes the cross entropy loss formula.

CELoss = −
C∑
i

gti ∗ log(si) (5)

In equation (4), the score and ground truth are denoted by si

and gti respectively for each class i in C .
All of the parameters are changed in an ad-hoc manner to

figure out the best combination. Table 3 represents the hyper-
parameters utilized in the proposed model.

Table 3 Hyperparameters of the proposed classification model

Hyperparameters Values

Number of trainable parameters 2,051,872
Optimizer Adam
Searching strategy Grid search
Output layer activation function Softmax
Hidden layer activation function ReLu
Batch size 64
Number of epochs 100
Loss function Categorical cross

entropy

2.7. Segmentation model

Ronneberger et al. established the U-Net structure [52]. The
proposed segmentation model is based on U-Net. It has been
commonly exploited for segmenting images in medical field
and it has also showed competitive performance.

The U-Net architecture is divided by two paths: downsam-
pling and upsampling. Figure 8 illustrates the architecture.
The image’s context is captured via the downsampling route.
The standard stack of convolutional and max pooling layers is
all that is used for the downsampling procedure. The second
method, also called as upsampling path, is symmetric expand-
ing and allows for exact localisation using transposed convolu-
tions.

The model’s first convolution layer accepts input of 160 ×
160 × 3. This convolution layer produces an output with a vol-
ume of 160 × 160 × 32 by using 32 kernels of size 3 × 3. Be-
cause padding is equal to 1 is maintained, the size of the output
feature-maps matches that of the input feature-maps. Initial-
izing the weights of the kernels uses a uniform distribution in
the proposed segmentation. The area in the input volume that a
certain feature extractor or kernel encompasses at a given time
is known as the receptive field or context. The pooling pro-
cess takes place between two layers in order to make the feature
map smaller and transmit fewer parameters through the model.
In the suggested model, the first max pooling layer uses a fea-
ture map with a size of 160 × 160 × 32 and produces a feature
map with a size of 80×80×32. In this instance, the pool size is
2×2. This procedure is carried out to keep the features that best
capture the MRI’s context. In this manner, the pooling proce-
dure in the downsampling route reduces the MRI size. The size
of the MRI decreases as the network becomes deeper, while

the receptive field expands at the same time. The number of
kernels is rising in each stage of the downsampling process to
extract increasingly intricate features from the input MRI. The
image is upsampled in the upsampling layer using the trans-
posed convolution approach. The feature map is routed via a
2 × 2 deconvolutional layer with strides equal to 2. It is trans-
mitted through two 3 × 3 convolutional layers, much like in the
downsampling path, and is sequentially concatenated with the
prior feature map. The aforementioned procedure is continued
until an image of size 160×160×32 is obtained, at which point
a 1× 1 convolution layer is applied to produce an output of size
160 × 160 × 3. The detailed description for each layer of the
proposed segmentation model is given in Table 4

The corresponding MRI and mask are used by this model
from the manually masked segmentation dataset. For each of
the four MRI classes that the dataset corresponds to, the U-Net
model will be trained.

2.8. Hyper parameters for segmentation model
The optimizer, input and output activation functions, loss

function, batch size, number of epochs, training-validation
splitting, and early-stopping patience have all been taken into
account as model hyperparameters for the proposed segmenta-
tion model.

The optimizer used is Adam [50]. ReLu [51] activation func-
tions are used with convolution in the hidden layers of the
model. The last convolution layer that generates the output
makes use of the sigmoid activation function. The segmenta-
tion model’s last layer has a binary cross-entropy function and
a sigmoid activation function. The batch size in the segmenta-
tion model is 32, and 200 epochs are taken into account. The
proportion between training and validation is 80% and 20%.
Early stopping patience is maintained at 100. The hyperparam-
eter values are represented in Table 5.

2.9. Classification approaches
Two categorization methods were suggested by the method-

ology used in this research.
The first approach extracts the MRI from the dataset and

sends it for preprocessing shown in Figure 5. The augmentation
stage preprocessing also applies to the MRIs. The classification
of MRIs into the four groups of glioma, meningioma, no tumor,
and pituitary is then carried out by both the proposed model
and the pretrained networks. In this method, segmentation is
not done before the classification goal.

The conventional approach is to first segment the image be-
fore sending it for classification. As segmentation only pulls
features from the MRI of the areas with the tumor. The time
and computational cost are both decreased if only the tumored
area of the MRI is supplied to the classification model as op-
posed to the entire image. Consequently, in the second method,
the MRIs are delivered to the classification model after being
segmented into the tumor sections.
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Figure 8 The suggested segmentation model is based on the U-Net architecture and contains a downsampling and an upsampling
route that accepts input MRIs and outputs a segmented mask image.

3. Results

The experiments are divided into a number of sections,
including comparisons and individual outcomes. Each DL
model’s and technique’s effects have been examined indepen-
dently, taking performance into account for each epoch. For
training and testing, a total of 6 classification datasets were
used. Among those, 4 are individual datasets (Dataset a [41],
Dataset b [42], Dataset c [43] , Dataset d [44]), and 2 are con-
catenated datasets (Merged dataset 1 and Merged dataset 2).
However, one segmentation dataset has been employed dur-
ing segmentation, which includes custom mask for the Merged
dataset 1 mentioned before. Five transfer learning models, in-
cluding the neural network model that has been proposed, are
trained and tested on all of the classification datasets and a dif-
ferent segmentation model, has been used throughout the stud-
ies. Results of data augmentation and comparison between the
results of segmentation in brain tumor classification also pre-
sented separately.

3.1. Experimental setup
The experiment has been run on both cloud services like

google collab and using personal computing devices. Since

the scope of the experiment is quite huge, which includes exe-
cuting multiple transfer learning and proposed neural networks
on a variety of classification and segmentation dataset, simul-
taneously running them were crucial. The neural networks are
built using python 3.9 with several packages such as Tensor-
flow, Sklearn, Numpy, and more.

3.2. Performance metrics

Accuracy is considered as a significant evaluation metric in
the classification purpose. Precision indicates how much a clas-
sifier can be trusted when it indicates that an instance belongs
to the positive class. A high precision rating indicates that there
are very few false positives and the classifier is very strict in the
criteria for classifying something as positive. The ratio of all in-
stances properly classified in the positive class to the total num-
ber of real members of the positive class is defined as recall. In
other words, it indicates how many of the total number of pos-
itive instances are classified properly. A metric for sensitivity
and specificity is called ROC AUC. The ROC is a graph that
depicts the relationship between True Positive Rate (TPR) and
Flase Positive Rate (FPR). The resultant score, known as the
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Table 4 The description for each layer of the proposed segmentation model
based on the U-net architecture having downsampling and upsampling paths

Layer
No.

Layer name Filter
count

Filter
size

Dropout
rate

Layer 1

Convolution+ReLu 32 3 × 3
Batch Normalization
Dropout 10%
Maxpooling 2 × 2

Layer 2

Convolution+ReLu 64 3 × 3
Convolution+ReLu 32 3 × 3
Dropout 20%
Batch Normalization
Maxpooling 2 × 2

Layer 3

Convolution+ReLu 128 3 × 3
Convolution+ReLu 64 3 × 3
Batch Normalization
Dropout 20%
Maxpooling 2 × 2

Layer 4

Convolution+ReLu 256 3 × 3
Convolution+ReLu 128 3 × 3
Batch Normalization
Dropout 20%
Maxpooling 2 × 2

Layer 5

Convolution+ReLu 512 3 × 3
Convolution+ReLu 256 3 × 3
Batch Normalization
Dropout 30%

Layer 4

Conv2DTranspose 128 2 × 2
Convolution+ReLu 256 3 × 3
Convolution+ReLu 256 3 × 3
Batch Normalization
Dropout 20%

Layer 3

Conv2DTranspose 64 2 × 2
Convolution+ReLu 128 3 × 3
Batch Normalization
Dropout 20%
Convolution+ReLu 128 3 × 3
Batch Normalization

Layer 2

Conv2DTranspose 32 2 × 2
Convolution+ReLu 64 3 × 3
Batch Normalization
Dropout 20%
Convolution+ReLu 64 3 × 3
Batch Normalization

Layer 1

Conv2DTranspose 32 2 × 2
Convolution+ReLu 32 3 × 3
Batch Normalization
Dropout 10%
Convolution+ReLu 32 3 × 3
Batch Normalization

Convolution+ReLu 3 1 × 1

ROC AUC score, is the area under this ROC curve and broadly
illustrates how well the model can predict classes.

Accuracy =
(T P + T N)

(T P + FP + T N + FN)
(6)

Table 5 Hyperparameters of proposed segmentation model

Hyperparameters Values

Number of trainable parameters 4,162,499
Batch size 32
Number of epochs 200
Optimizer Adam
Hidden layer activation function ReLu
Output layer activation function Sigmoid
Early stopping patience 100
Training/validation split 80/20%
Loss function Binary cross en-

tropy

Precision =
T P

(T P + FP)
(7)

Recall =
T P

(T P + FN)
(8)

The terms TP, TF, FP, and FN in equations refer to the
number of true positive predictions, true negative predictions,
false positive predictions, and false negative predictions, re-
spectively.

The F1 score, also known as the F-measure, is specified as
the harmonic mean of recall and precision and has been used as
a classification evaluation metric. It is a statistical measure of a
model’s accuracy. It is mathematically represented as follows:

F1S core =
2 ∗ Precision ∗ Recall
(Precision + Recall)

(9)

Dice coefficient, Dice loss, Binary cross entropy dice loss
and Intersection Over Union (IOU), recall, precision has been
considered as the evaluation metrics for the segmentation per-
formance metrics. IOU also referred to as the Jaccard Index,
is the area of overlap between the ground truth and the pre-
dicted segmentation and divided by the area of union between
the ground truth and the predicted segmentation.

JaccardIndex =
AreaO f Overlap
AreaO f Union

(10)

3.3. Effect of Augmentation

Data augmentation plays an important role in case of an im-
balanced dataset or a lower quantity of data. Since brain tumor
MRI data are hard to find and labeling these data need an ex-
pert’s opinion, the amount of data along with the number of
datasets are pretty rare. To observe the effect of augmentation,
three merge dataset, which was created by concatenating three
individual datasets and had imbalance ie: with different amount
of class-wise MRI, was passed through several operations to
create and augmented datasets. These operations include Ro-
tation, zooming, height and width shifting, shearing, horizontal
flipping, and mode filtering. To show the effect of augmen-
tation, epoch-wise validation accuracy, F1 Score and AUC of
the augmented and non-augmented dataset has been depicted in
Figure 9a, Figure 9b and Figure 9c respectively. All of these

14



Epoch

V
al

id
at

io
n 

A
cu

ra
cy

 

0.25

0.50

0.75

1.00

20 40 60 80 100

Non Augmented Augmented

(a)

Epoch

V
al

id
at

io
n 

F1
 S

co
re

0.25

0.50

0.75

1.00

20 40 60 80 100

Non Augmented Augmented

(b)

Epoch

V
al

id
at

io
n 

A
U

C

0.25

0.50

0.75

1.00

20 40 60 80 100

Non Augmented Augmented

(c)

Figure 9 Line charts showing suggested classification model
validation accuracy, F1 score, and AUC vs epochs using
Merged dataset 1 and Augmented Merged dataset 1. (a) The
chart showing the validation accuracy comparison for these
two datasets (b) the validation F1 score comparison (c) the
validation AUC comparison

figures represent similar trends and values while having more
oscillations in the case of augmented data. Specially for vali-
dation accuracy Figure 9a augmented results are a little below
the non-augmented ones, with additional fluctuations or drops,
with 0% lower validation accuracy. The validation F1 score
Figure 9b and AUC Figure 9c were almost identical epoch-wise
with slight changes for AUC values in some epochs, and to our
surprise, there is not much distinction between the augmented
datasets and non-augmented ones, even in the last epochs the
results of augmentations have deteriorated. Since the 5 merge
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Figure 10 (a) Graph showing training and validation accuracy
and AUC comparison for Dataset a of the proposed
classification model (b) The confusion matrix for Dataset a
showing the number of actual and predicted images for each
class of the proposed classification model

augmentation has almost the same results that is not included in
the section.

3.4. Impact of datasets in our proposed classification model

The proposed model has been tested and validated on all of
the individuals and merged datasets. Throughout the study, test
sets had been kept constant to ensure clear comparisons. This
part of the experiments are concerned with the effect of dif-
ferent datasets in our proposed models. To represent that effect,
handful of line chart and confusion matrix for each datasets val-
idation part is given.

The proposed model has been trained and tested for 100
epochs. The line chart in Figure 10a illustrates the training
and validation accuracy and AUC over the epochs for Dataset
a. Since the proposed model is deployed for the classification
task, AUC is given since it represents the separability of tumor
classes. The highest validation accuracy is 96.73 percent with a
training accuracy of 99.83 percent. On the other hand, both the
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Figure 11 (a) Line chart comparing training and validation accuracy and AUC for the proposed classification model on Dataset b.
(b) Dataset b’s confusion matrix, displaying the number of actual and predicted images for each class of the proposed model.
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Figure 12 (a) Graph comparing training and validation accuracy and AUC for Dataset c of the proposed classification model. (b)
The confusion matrix for Dataset c, which shows the number of actual and predicted images for each class.

training and validation AUC are quite high at 99.99 and 99.56
percent respectively. The training validation trends for both of
these metrics are quite similar, with some minor oscillations.
The next Figure 10b showcases the confusion matrix for the
testing data where the actual vs the predicted value is given.
Only a few of the glioma and meningioma were misclassified,
although these numbers are very low compared to the correct
classification.

Similarly, for Dataset b, epoch-wise accuracy and AUC curve
have been illustrated in Figure 11a, which have a slight dif-
ference between the training and validation results. Since
this dataset was imbalanced, without the augmentation process
there was some deviation in each epoch, although the fluctua-
tions were minimal. The maximum training accuracy is 99.93
percent and the AUC is 99.99 percent whereas the validation

AUC fell down to 88.85 percent. In Figure 11b the correspond-
ing validation confusion matrix is given, where all of the classes
except pituitary have some misclassifications.

Again in Figure 12a, same as previous, the accuracy and
AUC curve is illustrated whereas Figure 12b delineated the con-
fusion matrix for Dataset c. Similar to other single datasets
there were some ups and downs in the validation curves as
training progresses the maximum results were quite high, as
the training and validation AUC are 99.9% and 96.88% respec-
tively. Again in the confusion matrix, the correct classifications
are way higher than the false ones. Dataset d also follows a sim-
ilar pattern to Dataset c which is shown in Figure 13a and Figure
13b. Figure 13a shows similar oscillations, although that stabi-
lize in the end, and the validation AUC has the value of 0.9688.
On the other hand, Figure 13b depicts the confusing matrix for
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Figure 13 (a) Graph showing training and validation accuracy and AUC comparison for Dataset d of the proposed classification
model (b) The confusion matrix for Dataset d showing the number of actual and predicted images for each class of the proposed
classification model

(a) 3-merge confusion (b) 5-merge confusion

Figure 14 Confusion matrix illustrating the number of actual and predicted MRIs following application of the proposed
classification model . (a) Merged dataset 1, (b) Merged dataset 2

Dataset d, where glioma is the overall less correctly predicted
class.

3.5. Classification comparison on two merged datasets

To better understand the impact on datasets for performance,
two merged datasets were also validated on the proposed model.
Figure 14a and Figure 14b demonstrate the validation confusion
matrix for Merged dataset 1 and Merged dataset 2. Since the
merge dataset is slightly imbalanced, there were differences in
the count of separate classes, however most of the predicted
classes are which can be seen from Figure 14a. Comparably, in

Figure 14b, there are only a few misclassifications, in total 93,
compared to correct classification which is around 4200.

Comparative analysis of various evaluation metrics for dif-
ferent transfer learning models and the proposed model is illus-
trated in Figure 9 to Figure 19. The first comparison is done
on the Merged dataset 1, where training and testing accuracy
of proposed model along with VGG16, VGG19, Resent152v2,
EfficientNet B0, EfficientNet B7 is given. Although a lot more
transfer learning models have been tested for this purpose, the
above-mentioned models predicted surprisingly well, some-
times on par with the proposed model, compared to others. Fig-
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Figure 15 Performance metrics for 5 transfer learning
techniques vs the proposed approach (a) For the situation of
training Merged dataset 1, where the metrics values are
relatively near (b) For validation of Merged dataset 1, where
the proposed model outperforms.

ure 15a represents the comparisons of training metrics, where
the proposed model achieved an ashtonosing 99.8 percent ac-
curacy and F1 scores. The results of VGG16, Resent152v2,
EfficientNet B0 are also quite similar, touching the 99 percent
mark. On the contrary, in case of testing accuracy in Figure
15b and F1 score, EfficientNet B0 comes down to 97 percent.
Again, for testing metrics the proposed model achieved higher
value than any other models, at a value of 98.7%, which also
really close to train accuracy, providing the fact that the model
was well trained. The recall, precision and F1 score was also
quite similar to accuracy, ranging from 98.7 to 98.8 percent.

The line chart in Figure 16 depicts the training and valida-
tion accuracy and AUC for proposed model and the best trans-
fer learning model from previous comparison - VGG16, which
indicates that the proposed model suffer from less oscillation
then the VGG16 model. Also the train and validation accuracy
are almost close to each other, so there might not be any over
fitting or underfitting issue.

Since, we have also created a separate augmented dataset
from the Merged dataset 1, another bar chart is given in Fig-
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Figure 16 Graph comparing training and validation accuracy
and AUC for the proposed classification model to VGG 16 for
Merged dataset 1.
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Figure 17 Comparison of proposed model with 5 transfer
learning models on Augmented Merged dataset 1, where
proposed models surpass

ure 17 to showcase the validation performance comparisons,
where our proposed model has higher performance than the
other models in terms of results. The proposed model achieved
validation accuracy and F1 score of 98.7 percent, and 99.1 per-
cent AUC.

Again in Figure 18a and Figure 18b training and testing
evaluation are given to create comparisons among models for
Merged dataset 2. Likewise in the comparison of Merged
dataset 1, the models achieve almost similar results in training,
however VGG19 and EfficientNet B7 performs significantly
worse than the proposed model which resulted in an accuracy
of 99.9 percent. Although in validation performance, proposed
model outclasses the other models, with accuracy and F1 score
of 97.6 percent, where all of the transfer learning models have
these values less than 95 percent. The Figure 19 represents an-
other epoch wise line chart comparing the VGG16 model per-
formance with the proposed model. Similar to the Figure 16,
there were only minor fluctuation in the learning process of the
proposed model. Although the proposed model has a lot less
parameters than the transfer learning models, it performs better
than in terms of both training and validation.
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Figure 18 Metrics of performance for 5 transfer learning
approaches against the suggested methodology (a) For the
training Merged dataset 2 condition, where the metrics values
are pretty close (b) For the validation Merged dataset 2
situation, where the proposed model outperforms.
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Figure 19 Graph comparing training and validation accuracy
and AUC for the proposed classification model to VGG 16 for
Merged dataset 2.

3.6. Segmentation result analysis

To separate the tumor portion from brain MRI images, a cus-
tom made U-Net was also trained on segmentation dataset. The
Figure 20 illustrates proposed segmentation model output for
different classes in the dataset with the ground truth image.

The input glsmri and predicted mask generated for Dataset
d using the proposed segmentation model are shown in Figure
21. The graphic demonstrates how the model conveniently seg-
mentates the tumor sections from the input MRI.

The segmentation model was also tested using a variety of
statistical methods and image similarity measurements. Figure
22a and Figure 22b represents training and validation precision
and cross entropy loss over 200 epochs for the segmentation
model. Both loss values are quite low , near 0.1 and the preci-
sion are above 90 percent. There were almost no fluctuation in
the training process.

Figure 23 represents the statistical and similarity measure for
the validation data, the validation cross entropy loss is 6.6% ,
with 98.4 percent precision, and the recall is 71%.

From Table 6 the values of performance metrics are noted
as the dice coefficient value is 0.89, the jaccard index is 0.81,
dice loss and binary cross entropy dice losses are 0.10 and 0.79
respectively.

Table 6 Performance Metrics for the proposed segmentation model

Performance Metrics Values

Dice Coefficient 0.89
Dice Loss 0.10
Binary cross entropy Dice loss 0.79
Intersection Over Union 0.81

3.7. Effect of segmentation

Another comparison is made between segmented and non
segmented classification, to observe the effect. Since segmen-
tation reduces the data size significantly, the over all time of
classification models are reduced. Figure 24 illustrates the vali-
dation results of different classification models on segmented
tumor image which is created from Merged dataset 1. The
proposed model achieved 99 percent accuracy, 98.7 percent F1
score and 99.6 percent AUC for segmented tumor classification.
Compared to proposed model, the best transfer learning model
is Resnet152v2 with a validation accuracy of 96 percent, which
is lower than the proposed model. In terms of the effect of
segmentation, Figure 25 describes the difference between seg-
mented and non-segemented tumor classification. The statisti-
cal metrics are quite similar, varies by only 0.1 percent utmost.
The proposed models achieved 98.8 percent validation accuracy
with the segmentation process whereas without cutting out the
tumor portion from images, it achieved 98.7 percent validation
accuracy. The time needed to train classification model with
out segmentation was 21 min 66 seconds, compared to the with
segmentation process, which need a total time of 58 minutes 33
seconds. Since in the second approach two model, one Unet for
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Figure 20 The proposed segmentation model’s projected mask and grouth truth comparison, which is based on the U-net
architecture and accepts input MRIs and outputs segmented mask image
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Figure 21 Predicted mask generated from input MRI using proposed segmentation model for classification Dataset d.

segmentation, and one classification model is needed to train,
it had a higher training time. However in case of just classifi-
cation after segmentation, the time reduces to only 13 minutes,
which is 40 percent lower than the previous approach.

3.8. Comparison with State of the Art Papers

The proposed model is compared to several existing classi-
fication models in relation to dataset a. As a result, all of the

papers in Table 7 conducted MRI image multiclassification and
classified the images as glioma, meningioma, pituitary, or no
tumor. Ayadi et al. [19] also implemented a CNN approach and
achieved an accuracy of 94.74%. Ghassemi et al. [26] proposed
a GAN model where deep convolutional neural network is used
as the discriminator for detection of fake images that are gen-
erated by the generative model and a pre-trained CNN network
is fine-tuned to perform as classifier for brain tumor classifica-

20



Epoch

0.00

0.25

0.50

0.75

1.00

50 100 150 200

Training Precision Validation Precision

(a)

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

50 100 150 200

Training Loss Validation Loss

(b)

Figure 22 The proposed segmentation model’s training and validation (a) precision vs. epoch (b) loss vs. epoch comparison,
where the validation precision and loss both nearly match their respective training curves
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Figure 23 Comparison of training and validation performance
measures (loss, recall, and accuracy) for the proposed
segmentation model.
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Figure 24 Validation performance comparison of proposed
classification model with 5 transfer learning methods after
segmenting tumor MRIs using the proposed segmentation
model and transferring them to the classification model on
Merged dataset 1.

tions and the model achieved an accuracy of 95.6%. Ismael et
al. [53] combined the 2D DWT and 2D Gabor extraction meth-
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Figure 25 Proposed classification model validation
performance metrics comparison for Merged dataset 1 when
tumor MRIs are segmented using the proposed segmentation
model and when they are not segmented.

ods for feature extraction, the features were fed to a traditional
neural network and achieved an accuracy of 91.9%. Afshar et
al. [54] employed Capsule Network on segmented tumor re-
gions to address CNN’s shortcomings related to the loss of the
active features at the specific location in the subsampling layers
and poor training results regarding small datasets. Pashaei et al.
[55] proposed a method that extracts brain tumor features us-
ing CNN and further classifies the obtained features into three
classes of tumors such as meningioma, glioma and pituitary tu-
mors using . With an accuracy of 96.7%, the proposed clas-
sification model beats the results of the previously described
research using Dataset a.

4. Discussions

This research provides a comprehensive comparison of sev-
eral tumor classification algorithms. First, the influence of data
and datasets was evaluated across different accessible datasets
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Figure 26 The whole classification process including the segmentation technique is shown, including the input MRI, input mask,
generated mask, tumor area, actual class, and predicted class.

Table 7 Comparison among proposed model and State of The Art papers
considering the Dataset a

Ref. Year Method Accuracy
(Percentage)

Ayadi et al. [19] 2021 CNN 94.74
Ghassemi et al. [26] 2020 GAN+CNN 95.6
Badža et al. [14] 2020 CNN 96.56
Nawab et al. [33] 2019 AlexNet, VGG16,

VGG19
94.82

Sultan et al. [12] 2019 CNN 96.13
Pashaei et al. [55] 2018 CNN 93.68
Ismael et al. [53] 2018 Neural Network

(NN)
91.9

Afshar et al. [54] 2018 Capsule Network
(CapsNet)

86.56

Proposed Model Deep CNN 96.7

to determine if it had any effect on classification. Because
the size and output classes of this dataset vary, the findings

were fairly disparate. Nonetheless, the proposed strategy pro-
duced some promising outcomes. The suggested model was
then trained and validated on two unique datasets developed
by combining previously existing ones. There are three types
of tumor MRI in this dataset, with normal MRIs. Attempts
have been made to ascertain, if any, effect of augmentation in
the process. Surprisingly, the effect of augmentation and even
preprocessing was not discernible, which may be attributed to
the proposed model’s comprehensive feature extraction capac-
ity. Then we tested our model to several transfer learning mod-
els to demonstrate that, even without a huge number of pa-
rameters, proposed model matches or outperforms the transfer
learning models in most circumstances. The effect of segmenta-
tion was then demonstrated by training and validating both seg-
mented and non-segmented MRI. The findings clearly illustrate
that, whereas segmentation requires two steps of model train-
ing, classification obtained equivalent or even superior results
in less time. So, if training time has no influence on the appli-
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cation, segmentation can improve classification performance.
However, if a minor variation in performance is not a prob-
lem, the suggested model may predict fairly well without any
segmentation. Figure 26 depicts the segmentation process, as
well as the actual classes, anticipated tumor classes, and actual
MRI inputs. According to the Figure, the classification model
with segmentation detects normal MRIs with 99.96% accuracy,
glioma and meningioma classes with 100% accuracy, and pitu-
itary tumors with 87.94% accuracy.

5. Conclusion

Because brain tumors may be exceedingly harmful, if not
deadly, early identification can save people’s lives. This study
proposes an automated classification strategy for rapid, early,
and accurate diagnosis in order to avert the disastrous conse-
quences. A deep CNN model has been used to classify brain
MRIs into four groups (glioma, meningioma, no tumor and
pituitary). A segmentation model for automatic segmentation
of brain MRIs from original input MRIs has been suggested.
Effective automated tumor segmentation is often challenging
due to the broad variety of tumor locales, shapes, and struc-
tures. For segmenting the tumor sections, we developed a U-
Net architecture-based model. The classification techniques are
not significantly different whether segmentation is used or not.
However, classification without segmentation shortens the time
required by the classification model. The impact of dataset aug-
mentation has been studied. The classification model was eval-
uated across numerous datasets and with 5 pretrained models.
Furthermore, the suggested model outperforms pretrained mod-
els and also when compared to state-of-the-art articles. The seg-
mentation approach also generated a more accurate segmented
mask, allowing every MRI picture from any dataset to be suc-
cessfully segmented.
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[9] F. Özyurt, E. Sert, E. Avci, E. Dogantekin, Brain tumor detection based on
Convolutional Neural Network with neutrosophic expert maximum fuzzy
sure entropy, Measurement 147 (2019) 106830, publisher: Elsevier.

[10] S. Sajid, S. Hussain, A. Sarwar, Brain tumor detection and segmentation
in MR images using deep learning, Arabian Journal for Science and En-
gineering 44 (11) (2019) 9249–9261, publisher: Springer.

[11] E. Irmak, Multi-Classification of Brain Tumor MRI Images Using Deep
Convolutional Neural Network with Fully Optimized Framework, Iranian
Journal of Science and Technology, Transactions of Electrical Engineer-
ing (2021) 1–22Publisher: Springer.

[12] H. H. Sultan, N. M. Salem, W. Al-Atabany, Multi-classification of brain
tumor images using deep neural network, IEEE Access 7 (2019) 69215–
69225, publisher: IEEE.

[13] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio,
C. Pal, P.-M. Jodoin, H. Larochelle, Brain tumor segmentation with deep
neural networks, Medical image analysis 35 (2017) 18–31, publisher: El-
sevier.
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[23] F. Özyurt, E. Sert, D. Avcı, An expert system for brain tumor detection:
Fuzzy C-means with super resolution and convolutional neural network
with extreme learning machine, Medical hypotheses 134 (2020) 109433,
publisher: Elsevier.
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