
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.DOI

Comprehensive Analysis of
Nature-Inspired Algorithms for
Parkinson’s Disease Diagnosis
SHAKILA SHAFIQ 1, (Member, IEEE), SABBIR AHMED 1, (Member, IEEE), M SHAMIM
KAISER 1, (Senior Member, IEEE), MUFTI MAHMUD 2, (Senior Member, IEEE), MD.
SHAHADAT HOSSAIN 3, (Senior Member, IEEE), KARL ANDERSSON 4, (Senior Member,
IEEE)
1Institute of Information Technology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh (e-mail: shakilaju46, sabbir.iit.ju@gmail.com,
mskaiser@juniv.edu).
2Department of Computer Science, Nottingham Trent University, Nottingham, U.K. (e-mail:muftimahmud@gmail.com).
3Department of Computer Science and Engineering, University of Chittagong, University-4331, Chattogram, Bangladesh
4Pervasive and Mobile Computing Laboratory, Luleå University of Technology, 931 87 Skellefteå, Sweden

Corresponding author: Mufti Mahmud (e-mail: muftimahmud@gmail.com) Karl Andersson (email:karl.andersson@ltu.se ).

ABSTRACT
Background:
Parkinson’s disease (PD) is a prominent neurodegenerative disease that damages the neurons of the
substantia nigra, causing irreversible impairments leading to involuntary movements. As this disease
disrupts patients’ daily activities in a mature stage, early detection of the disease is crucial. Several methods
based on nature-inspired (NI) algorithms have been proposed for PD detection and patient management. As
there are several NI algorithms for feature selection, a mapping with an individual machine learning (ML)
classifier is necessary to obtain optimal performance of the detection pipeline.
Method:
To fill this gap, in this work, 13 NI algorithms and 11 ML classifiers were selected, and critical comparisons
were performed regarding their combined performance in detecting PD. Each NI algorithm was employed
to select an optimal feature set which was then classified by the 11 ML classifiers keeping the same
parameters. This generated 143 NI-ML pairs, which were carefully compared to find the best-performing
pairs considering several assessment criteria such as accuracy, cross-validation mean score, precision, recall
and F1-score.
Results:
The results of the extensive comparative analysis allowed the ranking of the algorithms in the 50th, 75th and
95th percentile to identify the best-performing pairs. The analyses revealed that 12 NI-ML models obtained
a testing accuracy of over 91%, which is above the 95th percentile value. The Flower Pollination Algorithm
and Extreme Gradient Boost Algorithm pair obtained the highest testing accuracy of 93%.
Conclusion:
This study revealed the remarkable performance of the boosting algorithms promoting explainable machine
learning in PD detection.

INDEX TERMS Parkinson’s Disease, Nature-inspired algorithms, Machine Learning classifiers, Feature
selection, Classification

I. INTRODUCTION

PARKINSON’S disease (PD) is a foremost neurodegen-
erative disease that is caused due to the loss of sensory

cells in the substantia nigra, a portion in the midbrain [1]–[3].

This disease affects the nerve cells of this portion that pro-
duce dopamine which is further used by our nervous system
to exchange messages between sensory cells. Dopamine has
a vital role in our daily behaviour and physical movements.
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Due to less dopamine production, imbalanced physical move-
ments such as spontaneous tremors and rhythmic muscular
tightening cause shaking of several body parts while moving.
Again, tremor, the primary manifestation of PD, is also
caused by slow movement (bradykinesia) and muscle stiff-
ness (hypertonia). These involve the Basal Ganglia, a brain
area related to training, speech and gait patterns. Other than
the pre-motor system manifestations, some more early symp-
toms are– gastrointestinal problems (such as constipation and
sluggish food transit through the intestines from the stom-
ach), loss of patient’s smelling sense (hyposmia), sleeping
disorder (insomnia), Willis-Ekbom disease and immoderate
daytime drowsiness, erectile dysfunction in males, lower rate
of lubrication in females, trouble attaining orgasm in both
males and females, and affective disorders. As dopamine is
also involved in emotional feelings, sometimes the patients
with PD may experience problems like anxiety, depression,
and lack of interest and emotional attachment to something.

PD is the second most commonly diagnosed ailment
that affects older adults, specifically those over 60, after
Alzheimer’s disease [4]. The pervasiveness of PD can be
observed in a recent study by the Parkinson’s Foundation [5].
As per the Parkinson’s Foundation, over 10 million people
live with PD globally. PD affects roughly 4% of people
before they reach the age of 50, although the likelihood of
being affected increases with age [5]. As a result, PD is
worrisome not just for the elderly but also for adults. In the
United States, the yearly expenditures of PD are projected to
reach about $11 billion, where direct costs of $6.2 billion are
included [6]. Most costs are expended in the latter phases of
PD when manifestations are more dominant than ever before
[7]. Hence, from a strictly financial viewpoint, any technique
that identifies early symptoms of PD (i.e., milder and less
acute) would be beneficial in reducing treatment cost. The
same can be stated about the quality of healthcare. Because
this condition creates serious issues and affects patients’
everyday activities in the late stages, early diagnosis of the
disease is critical to living healthier lives for as long as
feasible.

There is no particular test for diagnosing PD. It is diag-
nosed by neurologists following the patient’s medical his-
tory, discussing the patient’s signs and manifestations, and a
physical and neurological examination. A specialised single-
photon emission computerised tomography (SPECT) scan,
also known as dopamine transporter scan (DaTscan), may
also be recommended by doctors [6]. Even if it may reinforce
the assumption that the patient has PD, the manifestations
and neurological examination can precisely determine the
actual diagnosis. Most patients do not need a DaTscan as it
may lead to inaccurate results for those with any condition
related to impaired dopamine nerve terminals in the corpus
striatum [8]. For screening out other ailments that might
be causing patients’ complaints, doctors may recommend
lab tests like blood tests. Imaging tests, including MRIs,
brain ultrasounds, and PET scans, can also be performed
to confirm a diagnosis of other disorders [8]. Diagnosing

PD may take some time and may involve periodic follow-
ups with neurologists specialised in movement disorders to
examine the patients’ status and manifestation over time [8].

A significant number of diagnostic methods are increas-
ingly being developed. A massive amount of data is pro-
cessed and stored. A new variety of wireless and wired
medical devices are being introduced into clinics, hospitals,
and other healthcare institutions. Besides medical experts,
computer scientists are also looking to develop robust tech-
niques to detect it at an earlier phase. Because the earlier
it is detected, the more likely the patients will benefit from
medication. In recent years artificial intelligence (AI) has
been applied in diverse problem domains to solve various
challenging problems including student engagement [9], vir-
tual reality exposure therapy [10], text classification [11]–
[14], cyber security [15]–[18], neurological disease detection
[3], [19], [20] and management [21]–[26], elderly care [27],
[28], biological data mining [29], [30], fighting pandemic
[31]–[37], and healthcare service delivery [38]–[40]. Many
nature-inspired (NI) algorithms have been successfully used
as diagnostic tools in recent years. These NI algorithms,
inspired by various common natural observations or phenom-
ena like behaviours of fish, birds, insects, animals, plants,
humans, and natural events, are developed and used to con-
struct PD diagnosis approaches. The feature selection process
selects a small subset of optimal features from an enormous
collection of features while retaining system performance,
resulting in better accuracy. Due to the involvement of many
features in machine learning (ML) works, various approaches
involving NI algorithms have been developed to address the
challenge of reducing the large feature space by removing the
inessential and extraneous features [29], [30]. As a result, the
training process has an incisive structure without losing the
predicted accuracy achieved by employing just the most es-
sential features. Thus, the problem’s computing cost and time
complexity can be decreased if nature-inspired approaches
are used.

Many NI algorithms have been commonly used for feature
selection to achieve a better classification with ML tech-
niques for PD detection. For instance, Genetic Algorithms
(GA), Ant-Colony Optimisation (ACO) with Support Vector
Machine (SVM) [41] [42], GA and Binary Particle Swarm
Optimisation (BPSO) with 11 Machine Learning techniques
[43], Binary Grey Wolf Optimisation (BGWO) [44] with
three ML methods: K-Nearest Neighbors (K-NN), SVM
and Naive Bayes (NB) [45]. But some recently proposed
algorithms, e.g. Flower Pollination Algorithm (FPA), Jaguar
Algorithm (JA), Sine Cosine Algorithm (SCA), and Salp
Swarm Algorithm (SSA), which are well enough optimisa-
tion algorithms, have not been studied yet in this scope. This
study focused on the commonly used NI algorithms and the
algorithms mentioned above that have not been studied be-
fore; DE, FPA, and SSA performed well with a mentionable
outcome. Figure 1 depicts the 13 NI optimisation algorithms
used in this study. The contributions of this study are the
following:
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FIGURE 1. Thirteen widely acknowledged nature-inspired algorithms of seven
different classes used in this study for feature selection.

• We employed thirteen NI feature selection algorithms,
such as Bat Algorithm (BA), Cuckoo Search (CS), Dif-
ferential Evolution (DE), Firefly algorithm (FA), Flower
Pollination Algorithm (FPA), Genetic Algorithm (GA),
Jaguar Algorithm (JA), Particle Swarm Optimisation
(PSO), Grey Wolf Optimisation (GWO), Harris Hawks
Optimisation (HHO), Sine-cosine Algorithm (SCA),
Salp Swath Algorithm (SSA) and Whale Optimisation
Algorithm (WOA) on a PD dataset. To the best of
the author’s knowledge, DE, FPA, JA, SCA, or SSA
algorithms have not been studied for feature selection
in PD.

• In addition to commonly used ML classifiers for PD di-
agnosis, six classifiers were experimented with, namely
Adaptive Boosting Algorithm (AdaB), Gradient Boost-
ing Algorithm (GradB), Extreme Boosting Algorithm
(XGB), Stochastic Gradient Descent Algorithm (SGD),
Gaussian Naive Bayes (GNB), and Bernoulli Naive
Bayes (BNB) which were not previously used in PD
diagnosis.

• In each of the NI algorithm’s feature selection tech-
niques, the performances of 11 ML classifiers were
tested in a separate experiment using the same set of
parameters to analyse the effect of feature selection on
classification accuracy. This is also compared to the per-
formance of ML techniques without feature selection.

• The results of different ML classifiers were compared
for each NI algorithm’s feature selection with the same
parameters as above.

• Finally, the best NI-ML pairs for PD classification test-
ing performance are ranked to find the best ones.

II. LITERATURE REVIEW
NI algorithms are among the most popular methods to solve
optimisation problems which belong to a group of evolu-
tionary problem-solving techniques inspired by nature. These
include Genetic Algorithm (GA), Particle Swarm Optimi-
sation (PSO), Bat Algorithm (BA), Cuckoo Search (CS),
Differential Evolution (DE), Firefly algorithm (FA), Harris
Hawks Optimisation (HHO), Grey Wolf Optimiser (GWO),
Jaguars Algorithm (JA), and Whale Optimisation Algorithm
(WOA). The GA mimics natural selection in which the fittest
individuals are chosen for reproduction to generate offspring
[46]. The PSO is based on swarming where the optimal
solution is searched in the solution space [47], [48]. The BA
is motivated by the echolocation technique of the microbat
[49]. The CS algorithm simulates cuckoo species that lay
eggs in the nest of individuals of other species [50]. The DE
is a population-based algorithm that works iteratively to im-
prove candidate solutions [51]. The FA is a recently created
algorithm inspired by the firefly’s flashing characteristic [52].
The HHO algorithm is proposed from the patterns of Harris
hawks’ chasing the prey, attacking suddenly and grasping
[53]. The GWO is a recently proposed algorithm that imitates
social actions and the haunting strategy of the grey wolves
[54]. The JA is also a newly developed NI algorithm based
on the behaviour of jaguars which has great potential in
exploitation and exploration [55]. The WOA was proposed
in 2016, encouraged by humpback whales’ predicate as they
prey uniquely [56].

Among many NI algorithms, GA and PSO have been used
more to reduce irrelevant data features. Similarly, Support
Vector Machine (SVM) is the most common ML technique.
Soumaya et al. [41] used GA for feature selection and SVM
for PD classification. Goyal et al. [57] implemented a two-
stage feature selection where in the first stage GA was used
by recursive feature elimination based on SVM classification
in the second stage. Afterwards, Pasha et al. [43] employed
GA and BPSO for dimensionality reduction of data on 11 ML
models for classification, namely LR, lSVM, rSVM, GNB,
GPC, KNN, DT, RFMLP, AB and QDA. After preprocessing
the data, Ul Haq et al. [42] united the ACO algorithm with
Relief for feature selection and SVM was applied for PD
classification.

Besides these popular algorithms, many NI algorithms
have been used for feature selection with ML classifiers.
Rajalaxmi et al. [45] selected the optimal features by binary
grey wolf optimisation (BGWO) [44] and compared the
features in the sigmoid function for these three ML methods:
KNN, SVM and NB. Though SVM showed the highest
accuracy of 93.88%, it could not select the minimum number
of features. In contrast, KNN selected the minimum number
of features but came up second with an accuracy of 92.86%.
Then the number of selected features and accuracy obtained
from BGWO were compared with two original and two
modified versions of bio-inspired algorithms, namely GA,
PSO, Binary Bat Algorithm (BBA) and Modified Cuckoo
Search Algorithm (MCS). However, the proposed algorithm
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did not outperform as BBA produced the highest accuracy of
93.6%.

An optimised variety of the crow search algorithm (OCSA)
was introduced by Gupta et al. [58] via three standard ML al-
gorithms, namely KNN, DT, and Random Forest (RF). Then
the number of selected features, accuracy, and computation
time were compared between OCSA via K-NN, DT, RF
and actual chaotic crow search algorithm (CCSA), where 20
benchmark datasets were considered. The study concluded
that the proposed algorithm gives a better outcome with RF.
Another study was carried out by Gupta et al. [59] where
they compared an optimised version of a nature-inspired
algorithm with its original one in the same year. For feature
selection, the authors brought out an optimised cuttlefish
algorithm (OCFA) compared with the traditional cuttlefish al-
gorithm, also justified by two ML algorithms: DT and KNN,
on selected features where four datasets were used amidst
which speech dataset came up with the highest accuracy of
92.194%. A modified grey wolf optimisation (MGWO) algo-
rithm was proposed by Sharma et al. [60] for feature selection
where the classification of PD was determined with three fre-
quently used classifiers viz. KNN, DT and RF experimented
on four different datasets. After comparing the detection rate,
accuracy, and false alarm rate, RF outperformed the other two
classifiers. Lastly, the features were selected by MGWO and
OCFA. Furthermore, the accuracy comparison between them
was highlighted where MGWO selected lesser features and
had a higher accuracy of 94.83%. Later that year, Sharma et
al. [61] introduced a modified version of the ALO (MALO)
algorithm, a binary variant of the algorithm for eliminating
irrelevant features to revamp PD classification examined with
three classifiers viz. KNN, RF, and DT. The study tested
with two datasets: speech and voice; no handwriting dataset
was included like in the previous studies mentioned above.
Finally, the minimised number of features, accuracy and
computation time of MALO were compared with traditional
CFA and OCFA. Though MALO performed with the highest
accuracy for the speech dataset, it could not outperform the
voice dataset. Afterwards, Sehgal et al. [62] presented a
Modified Grasshopper Optimisation Algorithm (MGOA) for
detecting the optimal set of features. This study used the same
four datasets and three classifiers mentioned in [60] and also
found RF as the best performer in terms of detection rate,
accuracy, and false alarm rate amongst the three classifiers.
In addition, with OCFA, this study included MGWO for per-
formance comparison, where the proposed MGWO selected
the lowest number of features and highest accuracy. Later in
the same year, Durgut et al. [63] used binary versions of the
artificial bee colony algorithm to reduce irrelevant features
and deployed KNN for classification and SVM in the second
stage to compare individual results. Dash et al. [64] employed
a chaotic firefly algorithm integrated with a kernel-based NB
algorithm for discriminant features, and five classifiers were
brought for classification.

1) Research gap
It can be concluded from the literature review that the follow-
ing different criteria have led to the studies:

• One or two NI algorithms for feature selection.
• Few ML algorithms for classification.
• Very few numbers of best-performed NI-ML pairs.

As mentioned in the literature review, a very recent study
where Pasha et al. employed 11 ML classifiers but investi-
gated only two NI algorithms for feature selection, where
GA and AdaBoost were the best pair with an accuracy of
90.7%. Most of the studies investigated one or a few NI
algorithms, which does not reveal the significant role of NI
algorithms in dimensionality reduction. Moreover, no studies
were conducted using boosting algorithms for PD classifi-
cation to the author’s best knowledge. Therefore, addressing
these problems, this study overcomes the research gaps by
considering 13 NI algorithms for feature selection. It is worth
mentioning that 5 of these NI algorithms have not been
studied previously, among whom FPA, SSA, and DE rose
with a notable result. This study revealed the great effect of
boosting algorithms for PD classification for the first time.
So, this research work will establish a substantial opportunity
for the researchers of this area to understand which NI
algorithm performs better with which ML classifiers and their
domination in more accurate PD detection. As a result, this
study will play a significant role in PD diagnosis at an early
stage.

III. METHODOLOGY
A. DATASET
Many studies have used publicly available datasets from dif-
ferent repositories for PD diagnosis employing NI algorithm
for feature selection and ML algorithms for classification. In
this research study, the data set is collected from UCI ML
Repository [65] which was also used in some previous stud-
ies mentioned in the literature section [43], [63]. The dataset
is prepared from 252 patients whose speeches were recorded
at the Department of Neurology at Istanbul University, where
188 (107 men and 81 women) were PD patients from the
age 33 to 87 and 64 (23 men and 41 women) were healthy
individuals from the age 41 to 82. The entire data collection
process was brought out following the instructions of expert
physicians. Then the dataset is prepared by the sustained
phonation of the vowel ‘a’ collected from each patient,
asking them to repeat it three times. During this process,
the microphone was set to 44.1 kHz. Then several speech
signal processing algorithms like Time-Frequency features,
Wavelet Transform features, Vocal Fold based features, Mel
Frequency Cepstral Coefficients (MFCC), and Tunable Q-
factor Wavelet Transforms (TWQT) were extracted from
the patient’s speech recordings. Among the 754 features,
752 features have floating-point values, two features have
binary values, and 1 part has a certain ranged value (0-2).
The last feature is one of the features having binary values
which represent a class or the decision of this dataset. The
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ML classifiers can use this variable to identify PD patients
clinically. The main characteristics of the dataset are:

• Type of task: Classification
• Characteristics of attributes: Integer, Real
• Instances or row count: 756
• Attributes or column count: 754
• Missing Value: N/A

B. NATURE-INSPIRED ALGORITHMS
In reality, it’s unusual that all of the variables in a dataset are
relevant for developing a machine learning model. Adding
extraneous variables lowers the model’s generalisation ability
and reduces a classifier’s overall accuracy. Moreover, adding
more features to a model escalates the total complexity of
the model. A feature selection algorithm is used when the
number of features in the data is too large to compute, or
additional features result in worse evolution metrics. Since
machine learning works entail many parts, various nature-
inspired algorithms have shown promising outcomes in PD
diagnosis. In this article, we have experimented with 13
feature selection algorithms described along with their math-
ematical models in this current section.

Genetic Algorithm (GA)
In the 1970s, John Holland [66] introduced a new meta-

heuristic optimisation procedure which is known as a genetic
algorithm (GA). However, it was improved by Goldberg et
al. [67] in 1989. GA generally provides optimal or near-to-
optimal results by exploiting several effective operators like
crossover, mutation and selection. In GA, a set of positions
has termed a gene stored in a chromosome (known as a solu-
tion). Considering all old chromosomes, crossover generates
new chromosomes according to the crossover probability.
The mutation operator handles the diversity of the solutions
and changes the initial value of one or more chromosomes
based on a mutation probability.

Bat Algorithm (BA)
Bat algorithm was proposed by Yang [49] in 2010 based

on micro bats’ echolocation behaviour. There are four pa-
rameters involved with the bat algorithm, namely, velocity
(v), position (x), pulse rate (r), and loudness (A). In each
iteration, the frequency of each bat is adjusted by eq 1 and
the velocity and position will be updated by eq 2 and eq 3
respectively.

fi = fmin + (fmax − fmin)β (1)

vti = vt−1
i +

(
xt
i − xt

gbest

)
fi (2)

xt
i = xt−1

i + vti (3)

If rand > ri where 0≤ rand ≤ 1, a best solution will be
selected. Then around the selected best solution, a local so-
lution will be generated. If rand < Ai and f (xi) < f (x∗),
then the solution is accepted, ri is increased and Ai is reduced

by eq 4 and eq 5. Then the bats will be ranked and the current
best solution will be generated.

rt+1
i = r0i

[
1− eγt

]
(4)

and
At+1

i = αAt
i, (5)

where α = γ = 0.9.
Cuckoo Search Algorithm (CS)
CS is a meta-heuristic algorithm introduced by Yang and

Deb [50] in 2009. This algorithm is inspired by some cuckoo
species that lay eggs in the nest of other birds, also called host
birds. After initialising the CS parameters namely the number
of available host nests, i.e., population (n), probability of
finding the cuckoo’s egg by the host bird (Pa) and maximum
number of iterations (Maxt), random walk is done by cuckoo
using Levy Flight (eq 6) to generate the new solution in
the host nest and the fitness, Fi is generated. Levy Flight is
performed as:

xt+1
i = xt

i + α⊕ Levy(λ), (6)

where α is the step size, λ is the Levy exponent (λ =1.5),
xt
i current location. Random step length is calculated from

Levy distribution. Levy(λ) is calculated as eq 7.

Levy ∼ u = t−λ (1 < λ ≤ 3) (7)

After that, a nest is chosen randomly from n, and the fitness
of the cuckoo is compared with the host nest. If the fitness of
the cuckoo is greater than the fitness of the host, then the host
egg is replaced with a cuckoo egg, i.e., the current solution.
If the host bird identifies the cuckoo egg, the worst case is
generated, and the egg is thrown. A new nest is built near the
old one, which can be mathematically expressed as eq 8.

xt
i = xt

i + ϵ
(
xt
i − xt

j

)
(8)

where ϵ is a random distribution from 0 to 1; in this case,
a new solution is generated again by the Levy Flight. The
current solution is ranked in each iteration until the stopping
condition is met.

Differential Evolution Algorithm (DE)
In the 1990s, DE was introduced by Storn and Price [51]

[68]. The chosen values of the parameters greatly impact the
performance of the optimisation of this algorithm. The three
significant parameters are: the population size denoted as NP,
the crossover probability, CR and the differential weight, F.

Let f : Rn → R denote the fitness function to be
minimised. Let x ∈ Rn indicate an agent in the population.
The fundamental DE algorithm can be outlined below:

• Select the parameters. F ∈ [0, 2], CR ∈ [0, 1] and
NP ≥ 4

• All agents x will be initialised with the random position
in the state space.
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• The following steps will be repeated until a termination
requirement is met (e.g., the number of iterations com-
pleted or enough fitness is achieved):

• Select three agents, namely an (also called base vector),
b and c, randomly from the population. These agents
have to be different from each other and also from x.

• Select an index R ∈ {1, . . . , n} randomly where n
denotes the dimensionality of the problem.

• New position y = [y1, . . . , yn] of the agent is computed
as below:

• For every i ∈ {1, . . . , n}, select a random number,
ri between 0 to 1

• If ri < CR or i = R then set yi = ai + F × (bi − ci)
else set yi = xi.

• If f(y) ≤ f(x) then substitute the agent x within the
population with the improved candidate solution y.

• Repeat this for each agent x in the population.
• From the population, select the agent who has the best

fitness. Then Please return it to be the best-formed
candidate solution.

The trial vector generation technique as well as the control
parameter selection has a significant impact on DE’s perfor-
mance in a certain optimisation problem.

Firefly Algorithm (FA)
Firefly is a meta-heuristic algorithm inspired by the fire-

flies’ flashing behaviour which was created by Yang et al.
[52] in 2010. There are three idealised assumptions in the
basic FA:

• Fireflies are attracted to each other regardless of their
gender.

• A brighter firefly attracts a less bright firefly. When
the distance between two fireflies increases, brightness
and attractiveness decrease. If a firefly has the same
brightness as others or there is no such firefly brighter
than it, then it moves randomly.

• The objective function determines a firefly’s brightness.
The decrease in brightness due to distance can be ex-

pressed as the following the inverse square law,

I <
1

r2
(9)

The light intensity, I with a distance of r, can be calculated
as eq 10.

I = I0e
−γr2 (10)

, where I0 is light intensity respect the source. Likewise,
the brightness can be calculated as eq 11

β = β0e
−γr2 (11)

In this algorithm, a feasible solution to an optimisation
problem is symbolised as the position of a firefly. The po-
sition vector of a firefly at tth iteration is updated by eq 12.

xt+1
i = xt

i + β0e
−γr2ij

(
xt
j − xt

i

)
+ αϵti, (12)

where β0 > 1 is the attractiveness of xj at rij = 0. even
though there is no optimal solution explicit in the equation,
the fittest solution is chosen from a population of n solutions
at each iteration. Here, γ is an algorithm parameter that
controls how much the updating process is affected by the
distance between two fireflies, whereas controls the random
movement’s step length, rand is a random number from a
uniform distribution with values ranging from 0 to 1.

Flower Pollination Algorithm (FPA)
FPA is a bio-inspired algorithm; however, it is not based

on swarm intelligence. FPA was developed using flowering
plants’ pollination processes and features by Yang [69] in
2012. In FPA, a pollen particle’s location is expressed as
a solution vector, and the pollination process over a long
distance can be represented as eq 13.

xt+1
i = xt

i + γL(λ)
(
g∗ − xt

i

)
, (13)

where g∗ is the fittest solution found thus far at tth iteration
and γ is a scaling parameter. L(λ) can be regarded as a ran-
domly generated vector taken from a Levy distribution with
an exponent of γ in the above equation. Other pollination
characteristics, like flower constancy, can be expressed by eq
14

xt+1
i = xt

i + ϵ
(
xt
j − xt

k

)
, (14)

where xt
j and xt

k are pollen of identical plant species from
the distinct flowers. If xt

j and xt
koriginate from the identical

species or are picked from the identical population, this is
referred to as a local random walk if we take ϵ as a random
number from a uniform distribution with values ranging from
0 to 1. FPA is simplified by producing only one pollen gamete
in each flower.

Grey Wolf Optimisation (GWO)
GWO is a metaheuristic algorithm proposed by Mirjaliali

et al. [54] in 2014. GWO is inspired by grey wolves’ special
social hierarchy and hunting mechanism, where their ability
to work in a social pack increases their potential.

• Chasing or pursuing the prey: When the target enters
the territory, the wolves will chase the target towards the
waiting wolves to make the kill.

• Encircling the prey: During hunting, the wolves encir-
cle the prey. This can be expressed by eq 15 and eq 16.

−→
D =

∣∣∣−→C .
−→
Xp −

−→
X (t)

∣∣∣ , (15)

and −→
X (t+ 1) =

∣∣∣−→Xp(t)−
−→
A.

−→
D
∣∣∣ , (16)

where t is the current iteration,
−→
Xp(t) is the position of

the prey,
−→
X is the position of the grey wolf and

−→
A,

−→
C are

coefficient vectors.
The above equations are used to update the grey wolves’

position in compliance with the position of the prey.
• Hunting the prey: The hunting process is guided by

the alpha wolf i.e. the fittest solution. The mathematical
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model for the hunting process can be depicted as fol-
lows:

−→
Dα =

∣∣∣C1.
−→
Xα −

−→
X (t)

∣∣∣ , (17)

−→
Dβ =

∣∣∣C2.
−→
Xβ −

−→
X (t)

∣∣∣ , (18)

−→
Dδ =

∣∣∣C3.
−→
Xδ −

−→
X (t)

∣∣∣ , (19)

−→
X1 =

∣∣∣−→Xα −A1
−→
Dα

∣∣∣ , (20)

−→
X2 =

∣∣∣−→Xβ −A2
−→
Dβ

∣∣∣ , (21)

and

−→
X3 =

∣∣∣−→Xδ −A3
−→
Dδ

∣∣∣ , (22)

where Xα, Xβ and Xδ are the position of alpha, beta and
delta wolf respectively. The positions of the grey wolves are
updated by eq 23

−→
X (t+ 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(23)

• Attacking the prey: Alpha wolf will finish the hunt by
attacking the prey. The mathematical expression for this
process is as follows:

−→
A = 2.−→a .−→r1 −−→a , (24)

and

−→
C = 2.−→r2 (25)

When the prey stops moving, wolves will attack it to
finish the hunting process. This is modeled by decreasing the
−→a from 2 to 0 during the iterations. As −→a decreases,

−→
A also

decreases. A < 1 leads the wolf to attack the prey.
Searching for prey: If A > 1, then this will diverse the

wolves from the prey, and they will search for other prey. C
assists in putting some more weight on the prey to make it
difficult to the wolves to find it i.e. if A > 1, then emphasize
and if C < 1, then reduce importance.

Harris Hawks Optimisation (HHO)
HHO is a population-based recent algorithm proposed by

Heidari et al. [53] in 2019. It is inspired by exploring the prey,
surprise pounce and attacking strategies of Harris hawks.
HHO has different phases which are described below.

Exploration phase: Harris hawks is an intelligent bird that
can trace and detect the prey with its powerful eyes. If no prey
is found, Harris hawks will wait, observe and monitor the
site. In this algorithm, Harris hawks is a candidate solution
and the best candidate solution in each step is the prey. Harris
hawks haunt randomly on some sites and wait to detect prey
following two strategies.

1. Solution is generated based on the position of other
family members and prey which is modelled in eq 26 for the
condition q< 0.5.

2. Solution is generated based on perching tall trees which
is inside the family’s home range. This is modeled as eq 26
for the condition q>0.5.

X(t+1) =

{
Xrand(t)− r1 |Xrand(t)− 2r2X(t)| q ≥ 0.5
(Xrabbit(t)−Xm(t))− r3(LB + r4(UB − LB)) q < 0.5

(26)
]

where X(t+1) is the position vector of hawks, Xrabbit(t) is
the position of prey, X(t) is the hawks’ current position vec-
tor, r1, r2, r3, r4 and q are random numbers within (0,1), LB
and UB are the upper and lower bounds of variables, Xrand(t)
is a randomly selected hawk from the current population and
Xm(t) is the average position of the the current population
of hawks. The average position of current hawks’ population
is obtained by eq 27

Xm(t) =
1

N

N∑
i=1

Xi(t) (27)

where Xi(t) indicates the location of each hawk in itera-
tion t and N denote the total number of hawks.

Transition: After the exploration phase, this algorithm
transfer to the exploitation phase where there are different
strategies based on the prey’s escaping behaviour. The energy
of the prey is mathematically modelled as eq 28

E = 2E0(1−
t

T
) (28)

where E is the prey’s escaping energy, and T indicates the
maximum number of iterations, t is the current iteration, and
E0 is the initial state of its energy inside the interval [-1, 1].

Exploitation phase: The Harris hawks perform the surprise
pounce in this phase. As the prey attempt to escape, a
parameter r is considered to express the chance of escaping.
When r>0.5, the prey has a chance of successfully escaping
and r<0.5 the prey is not successful to escape. The following
four attacking strategies by this predator are proposed in this
algorithm.

1. Soft besiege: If r≥0.5 and |E|≥0.5, the prey has suffi-
cient escaping energy. When it attempts to escape, the Harris
hawks surround it softly to make it more tired and then
perform the attack. This can be mathematically modelled as
eq 29

X(t+ 1) = ∆X(t)− E|JX rabbit(t)−X(t)| (29)

∆X(t) = X rabbit(t)−X(t) (30)

Where ∆X(t) is the difference between the position vector
of the prey and the current location, r5 is a random number
inside (0, 1), and J = 2(1-r5) represents the random jump the
energy of the prey all over the escaping stage.
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2. Hard besiege: If r≥0.5 and |E|<0.5, the prey is tired
and has low escaping energy. The Harris hawks perform the
sudden attack. The current positions are updated using eq 31

X(t+ 1) = X rabbit(t)− E|∆X(t)| (31)

3. Soft besiege with progressive rapid dives: In this case,
|E|≥0.5 like the soft besiege but r<0.5. As the prey has
sufficient energy to effectively escape a soft besiege is made
before the sudden pounce. This strategy is more intelligent
than the previous one. The Harris Hawks can decide their
next move to perform a soft besiege following eq 32.

Y = Xrabbit(t)− E|JX rabbit(t)−X(t)| (32)

It is considered that hawks will dive using eq 33

Z = Y + S × LF (D) (33)

where D is the dimension of the problem and S is a
random vector by size 1 × D and LF is the levy flight
function.

This behaviour can be mathematically modelled as eq 34

X(t+ 1) =

{
Y if F(Y ) < F (X(t))
Z if F(Z) < F (X(t))

(34)

3. Hard besiege with progressive rapid dives: When
|E|<0.5 and r<0.5, the prey has not sufficient energy to
escape and a hard besiege is made before the sudden pounce.
This strategy is more like the soft besiege, just this time, the
hawks attempt to reduce the distance of their average location
with the escaping prey. Therefore, the final rule for this case
is the same as the previous strategy as eq where Y and Z are
produced using new rules as eq 35 and eq 36and eq 36

Y = Xrabbit(t)− E|JX rabbit(t)−Xm(t)| (35)

Z = Y + S × LF (D) (36)

Jaguar Algorithm (JA)
Taking into account the Jaguars’ special ability to move

in the direction of their prey shortly, Chen et al. [55] (2015)
proposed the Jaguar Algorithm (JA) having strong abilities
both in exploitation and exploration as these are executed
separately, unlike the traditional procedures. In addition,
when a jaguar discoveries prey in its territory, it not only
moves to the prey in a short time but also attacks carefully
after nearing the prey. Adopting these behaviours (hunting,
learning and territoriality) of jaguars, JA has the strong ability
to reach the global optimum solution.

The algorithm starts with initialising the unique adaptive
parameter ‘d’ (step) in the domain. In order to find the best
moving direction from the current position, jaguars checks
two directions as follows:

xc ± d ∗ 2i, i = 0, 1, 2, . . .

where xc denotes the current position. The potential direc-
tion for the jaguar is selected by comparing the fitness values
in both directions.

Learning is another prey-searching way of jaguars where
four sides are considered when jaguars move two dimensions
at a time. Four sides { ( + , + ), ( - , - ), ( + , - ),( - , + )} are
tested pairwise ({(+,+), (−,−)} and {(+,−), (−,+)}) to
obtain the potential direction. After executing the learning
procedure by testing these two classes respectively, ‘d’ (step)
is updated by dnew = dold

2 . The next round of hunting or
learning is continued exploiting the new ‘d’ until ‘d’ is too
small to differentiate.

Finally, the territory is restructured, and jaguars reborn in
the decision space excluding other parts.

Particle Swarm Optimisation (PSO)
PSO is a population-based optimisation procedure in-

vented by Eberhart and Kennedy [47] (1995) reviewing the
social behaviour of several natural swarms like fish schooling
and folks of birds. In this procedure, each possible solution
is presented by a particle and the set of all solutions or
populations is called a swarm. The execution of the algorithm
is commenced by initiating random people from particles.
Each possible solution (j−th) is determined with the help of
the corresponding particle’s position vector.(

ykj
)

and velocity vector
(
vkj

)
. For all iterations, the

acceleration direction of every particle is adjusted by the
particle’s personal best

(
pbestj

)
position and global best(

gbestj
)

position obtained up to this point in the population.
The position and velocity of each solution is upgraded by the
following equations ( eq 37 and 38):

yk+1
j = ykj + vk+1

j (37)

and

vk+1
j = wvk+1

j +c1r1(pbestj−ykj )+c2r2(gbestj−ykj ) (38)

where w is inertia weight, c1, c2 > 0 are coefficients of
acceleration and r1, r2 ∼ U(0, 1) uniformly distributed.

Sine Cosine Algorithm (SCA)
SCA is another novel population-based optimisation pro-

cedure designed by Mirjalili [70] (2016) utilising the charac-
teristics of sine and cosine trigonometric functions. The SCA
starts with generating several initial solutions randomly and
then, leads to the best solution by adopting two key search
policies, namely, global exploration and local exploitation.
In SCA, the position of each the solution is upgraded with
the help of the following mathematical equations for both
strategies:

yk+1
j = ykj +c1×sin (c2)×

∣∣c3pkj − ykj
∣∣ , c4 < 0.5 (39)

and

yk+1
j = ykj+c1×cos (c2)×

∣∣c3pkj − ykj
∣∣ , c4 ≥ 0.5 (40)
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where ykj is the current position of the solution, pkj de-
notes the position of the best-found solution, c1, c2, c3, c4
are random numbers. The parameter c1 indicates the moving
direction while c2 indicates the moving distance to the next
updated position. The parameter c3 is a random weight to
balance in calculating the distance in every iteration and,
finally, c4 measures equal switches between the sine and
cosine element.

Salp Swarm Algorithm (SSA)
Inspiring from the swarming behaviour of salps during

navigating and searching in oceans, Mirjalili et al. [71](2017)
proposed a novel optimization technique called Salp Swarm
Algorithm (SSA). During foraging in oceans, all slaps form a
swarm called a salp chain. The front member in the salp chain
is the leader and all the remaining salps are the followers. All
the followers update their position following the leader while
the leader updates the position as follows:

ykj = Wj + c1 {lj + c2 (uj − lj)} , c3 ≥ 0 (41)

and

ykj = Wj − c1 {lj + c2 (uj − lj)} , c3 < 0 (42)

where ykj denotes the leader position in the j−th dimen-
sion under k−th iteration, Wj denotes the food source’s
position in the j−th dimension, uj indicates the upper bound
in the j−th dimension, lj indicates the lower bound in the
j−th dimension and c1, c2, c3 are random numbers. All the
followers update their positions by using eq 43

yij =
1

2

(
yij + yi−1

j

)
(43)

where i ∈ {2, 3, . . .} and yij denotes the position of the
i−th followers in j−th dimension.

Whale Optimisation Algorithm (WHO)
Mirjalili et al. [56] proposed a whale optimisation algo-

rithm in 2016 which mimics the hunting technique of the
humpback species of whale. Humpback whale eats krill and
small fishes. After discovering the prey, they dive up to 12
meters deep into the sea and create bubble nets to catch their
prey. This is called the bubble net feeding method. There are
three different phases of this hunting process of humpback
whales.

Searching for prey: Coefficient vector, A is used to search
for prey where A is assigned a random value>1. If A>1, then
the new individual is far from the prey.

C = 2 ∗ r, (44)

a =
2− 2 ∗ t

MaxT
, (45)

A = 2 ∗ a ∗ r − a, (46)

D = |C ∗Xrand(t)−X(t)| , (47)

X(t+ 1) = Xrand(t)−A ∗D (48)

Once the best search agent is defined, other search agents
will update their positions towards the best search agent.

Encircling prey: Once humpback whales recognise their
prey and its The location they encircle the prey. Target prey
is the best candidate solution. This algorithm assumes the
current optimal solution as the prey position.

D = |C ∗X∗(t)−X(t)| (49)

X(t+ 1) = X∗(t)−A ∗D (50)

Attacking prey: The attacking method is done by shrink-
ing, encircling mechanism. The value of A is decreased.
When A<1, this means the agent is approaching the current
optimal solution. For updating the position first, the distance
between the whale and the prey is calculated. The process
can be expressed as follows.

D
′
= |X∗(t)−X(t)| , (51)

X(t+ 1) = D
′
.ebl. cos(2πl) +X∗(t), (52)

X(t+ 1) =

{
X∗(t)−A.D , p < 0.5

D
′
.ebl. cos(2πl) +X∗(t) , p ≥ 0.5

(53)

C. MACHINE LEARNING ALGORITHMS
After selecting the optimum feature set by employing 13
different NI algorithms, we distinctly applied 11 ML clas-
sifiers with each NI algorithm. Amongst these classifiers,
Linear Regression (LR), SVM, RF, K-NN and DT have been
widely used in many studies as a classifier or a group of
classifiers. Along with these commonly used classifiers, we
implemented six newly used classifiers, namely Adaptive
Boosting Algorithm (AdaB), Gradient Boosting Algorithm
(GradB), Extreme Boosting Algorithm (XGB), Stochastic
Gradient Descent Algorithm (SGD), Gaussian Naive Bayes
(GNB), Bernoulli Naive Bayes (BNB) in this research area.
Among these algorithms, the boosting algorithms performed
remarkably on the assessment criteria. In this section, all
these 11 ML classifiers are described shortly with their
contribution to classification with respect to different types
of data.

One of the simplest ML algorithms is linear regression
(LR) [72]. A linear relationship between one or more in-
dependent variables (predictor variable) with one dependent
variable (target variable) is shown in LR, thus the name.
Because LR reveals a linear relationship, it determines varia-
tion in the dependent variable concerning the variation in the
independent variable. Practically, other algorithms are more
suitable than LR for classification problems as LR works with
continuous value, whereas classification problem requires a
discrete value. DT [73] is a supervised learning algorithm
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that is most commonly employed to solve classification
problems, although it can also solve regression problems. In
this tree-structured classifier, internal nodes represent dataset
attributes, decision rules are represented by the branches, and
each leaf node provides the output. Decision trees need less
data preparation work than other techniques. SVM [74] is
one of the most well-liked supervised learning algorithms
for solving classification problems. The purpose of the SVM
algorithm is to generate the finest line or decision boundary
(also called a hyperplane) for categorising n-dimensional
space into distinctly classified data points. SVMs are espe-
cially popular because of their ability to operate multiple cat-
egorical and continuous variables. For solving classification
problems, RF [75] is one of the best algorithms that generate
decision trees from data samples, obtain predictions from
each of them and then select the best solution. It is based on
the idea of ensemble learning. Since it averages the results to
reduce over-fitting, it performs better than a single decision
tree. By using KNN [76], the model’s performance can be
improved, and complex problems can be solved by merg-
ing multiple classifiers. KNN algorithm saves the training
dataset, and based on the similarity with the existing data;
it classifies a new data point. This implies that incoming
data can be quickly classified into a suitable category using
the KNN method. This makes the KNN method significantly
faster than other training-based algorithms like SVM and LR.

Boosting Algorithm
The AdaB algorithm was originally named AdaBoost.M1

by the algorithm’s creators, Freund and Schapire [77]. It’s
been termed discrete AdaBoost in recent years as it is utilised
for classification rather than regression. AdaB is a machine
learning algorithm that can be applied to boost the act of
any other ML algorithm. The best use of AdaB is to improve
decision tree performance on binary classification problems.
Decision trees with one level are the most suitable and
commonly used method with AdaB. These trees are known
as decision stumps because they are so short and only have
one classification decision. Each instance is weighted in the
training dataset. For each instance, the initial weight is set as
eq 54

weight (xi) =
1

n
(54)

xi is the i−th instance and n is the total number of training
instances.

GradB algorithm belongs to the supervised branch of
machine learning that is a tree-based algorithm [78]. The
errors in ML algorithms are mainly categorised into two
types, i.e. Variance error and Bias error. GradB is one of the
boosting techniques that are used to minimizing the model’s
bias error. The base estimator cannot be specified in the GraB
technique, unlike the AdaB algorithm. Decision Stump is the
base estimator of the GradB algorithm, which is fixed. In
this algorithm, the n_estimator can be tuned like the AdaB
algorithm. However, the default value of n_estimator for
GradB is 100 if the value of n_estimator is not specified.

The GradB approach can be used to predict continuous target
variables and categorical target variables.

Tianqi Chen first developed the extreme Gradient Boosting
Algorithm in 2014, and Chen and Carlos Guestrin detailed
it in their article published in 2016 [79]. It also belongs to
the class of ensemble ML algorithms like AdaB and GradB
algorithm. Like Gradient Boosting, XGB uses decision trees
as its base estimators. DT models are used to construct
ensembles. To address the prediction errors resulting from
prior models, trees are inserted one at a time and fitted.
Models are fitted using a gradient descent optimisation ap-
proach and any arbitrary differentiable loss function. XGB is
designed to be highly effective and computationally efficient.
Execution speed and model performance are the two impor-
tant reasons to employ this algorithm. Unlike conventional
GradB, XGB builds trees in its way, with the finest node splits
determined by the Similarity Score(SS), gain and Previous
Probability(PP) in equation 55

SS =
(
∑n

i=1 Residualsi)
2∑n

i=1 [PPi × (1− PPi)]+λ
(55)

Stochastic Gradient Descent Algorithm
The SGD is one of the simplest yet most effective optimi-

sation techniques that is used to learn discriminative linear
classifiers using convex loss functions like LR and SVM.
Though it is easy to implement SGD, its sensitivity to feature
scaling and multiple hyperparameters requirements could
not seek this field’s researchers’ attention. Nevertheless, it’s
been a long time since SGD has been included in the ML
Community; it has taken considerable attention in recent
years regarding large-scale problems. This algorithm updates
the coefficients for each instance instead of at the end of the
instances. That is why it’s been successfully applied to large-
scale datasets.

Naive Bayes classifiers
Naive Bayes classifiers are a set of classification algo-

rithms based on Bayes’ Theorem with the naive conditional
independence assumption. Each feature is assumed to be in-
dependent and equal. Bayes’ theorem can be mathematically
expressed as eq. 56 where x1 to xn are dependent feature
vectors and y is class variable [80].

P (y|x1,...,xn) =
P (y)P (x1,...,xn|y)

P (x1,...,xn)
(56)

A variant of Naive Bayes classifiers is Gaussian Naive
Bayes which allows continuous data. It is named as follows
the Gaussian normal distribution. The features’ likelihood is
considered to be Gaussian (eq. 57) [80].

P (xi|y) =
1√
2πσ2

y

exp

{
− (xi − µy)

2

2σ2
y

}
(57)

In contrast with the GNB method, Bernoulli Naive Bayes
algorithm allows discrete data distributed as per Bernoulli
distribution. The features are assumed to be binary-valued,
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e.g. 0 or 1, yes or no, etc. To handle any other kind of data, a
BernoulliNB instance may binarize its input [80]. The basis
for the BNB decision rule is:

P (xi|y) = P (i|y)xi + (1− P (i|y)) (1− xi) (58)

IV. EXPERIMENTAL ANALYSIS
The experimental analysis is split into several parts. At first,
a discussion of the findings of a comparative examination
of 11 classification algorithms trained and tested on all
753 characteristics of PD data is provided. The next part
discusses the findings of a statistical comparison of 11 ML
classifiers trained on the optimum set of attributes from 13
NI algorithms. Then, the efficiency of 13 NI algorithms in
reducing the PD data set’s total size is explored compared
to machine learning algorithms. Lastly, a comparison of the
best-performing pairs for NI algorithms feature selection and
machine learning classifiers are also provided.

All experiments were conducted on a system equipped
with an Intel Core i5 CPU and an Nvidia Geforce 920Mx
GPU. Python was chosen as the implementation language for
this experiment and the anaconda distribution. Scikit learn
was used to implement machine learning algorithms. Eighty
per cent of the data in the datasets were used for training
purposes, while the remaining twenty per cent were used for
testing purposes.

A. PERFORMANCE METRICS
Numerous assessment criteria are used to assess feature
selection and machine learning classification performance.
Confusion matrices with True positive (TP), True Negative
(TN), False positive (FP), and False Negative (FN) values
were examined first for the final classification. Following
that, several additional standard measures were computed.
The following is a quick description of the assessment
metrics utilised in this work:

Accuracy is the metric of how many often guesses are
correct, both TN and TP divided by the total number of
predictions.
Recall is the measurement of positive prediction among
retrieved which retribution by the false negative.
Precision is the ratio of correct prediction with total positive
prediction
F1-Score is the harmonic mean of both precision and recall.
Thus, it takes both FP and FN into the computation.
Fitness Function measures a specified classification or se-
lection approach to attaining the defined goals. In this article,
the result of a KNN prediction is utilised, where K=3.
Cross-Validation Mean Score is the average of the results
from each K-fold training and testing. For this experiment,
5-Fold cross-validation with F1-Score as scoring metrics is
implemented.

B. PERFORMANCE OF ML CLASSIFIER WITHOUT
FEATURE SELECTION

A comparison is needed for several feature selection and
classification problems in this study. Since it is a binary
classification, accuracy and F1-score are selected as evolu-
tion measures for comparisons. Furthermore, for comparison,
only testing results are considered since training does not re-
flect real-world performance. At first, the evolution measures
of the eleven ML algorithms are computed with both training
and testing sets of the data, which is shown in figure 2. No
feature selection algorithm is applied in this step. Among
these classifiers, ensemble algorithms work better than others
in testing and treating scenarios. Random Forest, AdaB,
GradB, and XGB algorithms achieved a testing accuracy
of 83.60%, 88.360%, 86.77% and 85.71%, respectively. For
KNN classifiers, the value of K is set at 2 to 10, and K=3
achieved the best results among those. Hence in this article,
the KNN is referred to as the K=3 classification. After the
ones mentioned above, LR, DT, BNB and GNB results are
the most prominent. Again, the AdaB classifier achieved
the highest testing F1 score of 88% with a cross-validation
mean of 80.86%, whereas XGB achieved the highest cross-
validation mean of 82.02%. NI algorithm has been shown
to offer substantial answers to various real-world situations,
including the one selected for this study. Thirteen nature-
inspired algorithms were considered feature selection algo-
rithms for the dimensionality reduction of data.

C. PERFORMANCE OF ML CLASSIFIER WITH NI
ALGORITHM FEATURE SELECTION

To test the influence of feature selection for the PD dataset,
each NI algorithm was trained with the ML classifiers pre-
viously described. The number of features selected by each
NI algorithm is shown in table 1. Each feature selection algo-
rithm is trained for 100 iterations to achieve the best fitness
outcomes. For the experiments, the number of components
was set between 10 and 25. Figure 3 depicts the relationship
between fitness and iteration. Because many of the training
accuracy and F1 Score is 100 per cent, one key component
of the analysis is testing results, which are mentioned for
measuring performance.

1) BA

Several values have been tried with the trial and error method
for BA to find out the best combination for optimum perfor-
mance. In this study, the final value for maximum frequency
is set at 5, and the minimum frequency is set at 0 with
maximum loudness of 3 and a maximum pulse rate of 1.
The number of selected features is 256. The highest training
accuracy and F1-score have been achieved by DT, AdaB,
GradB, and XGB is 100% though the result of SGD is
noticeably poor, with an accuracy of 25% and an F1-score of
10% only. The boosting algorithms have also obtained higher
values of F1-score 86%, 88%, and 90% for AdaB, GradB,
and XGB respectively.
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FIGURE 2. Training and testing performance of the classifiers without feature selection described in Section IV B. The upper and lower portions reflect the testing
and training results, respectively. The horizontal axis shows the eleven ML classifiers, and the vertical axis shows the acquired scores of the classifiers for different
performance metrics. No classifier has achieved a testing accuracy of more than 90%. Legends: LR − Linear Regression; SVM − Support Vector Machine; RF −
Random Forest; K-NN − K-Nearest Neighbors; DT − Decision Tree; AdaB − Adaptive Boosting Algorithm; GradB − Gradient Boosting Algorithm; XGB − Extreme
Boosting Algorithm; SGD − Stochastic Gradient Descent Algorithm; GNB − Gaussian Naive Bayes; BNB − Bernoulli Naive Bayes.

TABLE 1. A summary of the thirteen NI Algorithms’ parameter settings for
feature selection

NI Algorithm Parameter settings
BA maximum frequency=5, maximum loudness=3,

maximum pulse rate=1
CS optimum discovery rate=0.25, Levy compo-

nent=1.5, threshold value=0.65
DE crossover rate=0.9, default factor=0.5
FA light amplitude=2, absorption coefficient=1, con-

trol alpha=0.97
FPA levy component=1.5, switch probability=0.8
GA crossover rate=0.8, mutation rate=0.05

GWO threshold=0.5
HHO threshold=0.5,levy component=1.5
PSO inertia weight=0.9, acceleration factor=2,3
SCA relative importance of error (alpha)= 2
SSA threshold=0.5

WOA threshold=0.5, logarithmic spiral=1.3

Legends: NI algorithm − Nature-inspired algorithm.

The average testing accuracy is 75.75% among all the
ML classifiers, with an average testing F1-score of 72.63%
shown in figure 4. The maximum accuracy for the AdaB,
GradB and XGB classifiers are 89.95%, 89.42% and 90.48%,
respectively. XGB has also achieved the highest F1-score of
90%.

2) CS
For CS feature selection, the optimum discovery rate is found
at 0.25, the Levy component is 1.5, and the threshold value
is 0.65. The number of selected features is 328. Like the BA
feature selection, DT, AdaB, GradB, and XGB have achieved
the highest training accuracy and F1-score of 100% and SGD

showed a very poor result with an accuracy of 34% and F1-
score 30% only.

The method has an average testing accuracy of 74.7% and
an F1-score of 72.63% with all the ML classifiers.

The AdaB, GradB and XGB classifiers have maximum
accuracy of 83%, 84% and 86%, respectively. XGB also has
the highest F1 score of 86%. The maximum training and
testing cross-validation mean are achieved by XGB with a
value of 89% and 82% respectively can be found in figure 5.

3) DE
In the case of DE feature selection, the results are better
than most other algorithms. The crossover rate of 0.9 and the
default factor of 0.5 has been selected for feature selection.
The number of selected features is 289. Like the BA and
CS, this algorithm has attained maximum training accuracy
and F1-score of 100% for DT, AdaB, GradB, and XGB. But
unlike BA and CS, this approach has performed not that poor
accompanied by SGD with an accuracy of 75% and F1-score
64%. The highest cross-validation mean is brought out with
XGB by 87% and AdaB and GradB have scored the same,
86%.

With a mean testing accuracy of 79.81%, this approach has
the highest accuracy with GradB and XGB classifiers, 91%
and the average F1-score is 78%. XGB achieves the highest
cross-validation mean of 84% which is depicted in figure 6.

4) FA
FA is a kind of mixed bag in terms of performance. For the
parameters of this algorithm, the light amplitude of 2, the
absorption coefficient of 1 and the controlling alpha of 0.97
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FIGURE 3. Fitness for 100 Epoch of each NI feature selection algorithm. The horizontal axis shows the number of iterations, and the vertical axis shows the fitness
of the respective NI algorithm.
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FIGURE 4. Training and testing performance of the classifiers after feature selection with BA described in Section IV C 1) BA. The highest training accuracy and
F1-score are 100% which has been achieved by DT, AdaB, GradB, and XGB. The maximum testing accuracy is achieved by XGB.

FIGURE 5. Training and testing performance of the classifiers after feature selection with CS described in Section IV C 2) CS. XGB has the maximum testing
accuracy and SGD has the minimum.

have been selected. Alike the previous three algorithms, FA
has carried out the highest training accuracy and F1-score
with DT, AdaB, GradB, and XGB of 100%. Additionally,
the FA-SGD method has yielded the same results as the DE-
SGD.

The average testing accuracy for all ML classifiers is
77.36%, and the average F1-Score is 74.81%. Here, BNB
and GNB classifiers achieved 74% and 75% cross-validation
scores that can be observed from figure 7. The number of
features selected was 363.

5) FPA

In the instance of FPA feature selection, the testing accuracy
outperforms other techniques that are delineated in figure
8. For feature selection, a levy component of 1.5 and a
switch probability of 0.8 were chosen. 348 features have
been selected. The technique has the highest testing accuracy
for GradB and XGB classifiers, 91%, with a mean testing
accuracy of 79.81%. The typical F1-score is 78%. XGB has
the most significant cross-validation mean of 84%.

DT, AdaB, GradB, and XGB have also obtained 100%
training accuracy and F1-score for this approach. GradB has
scored the highest cross-validation means of 87% and AdaB,
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FIGURE 6. Training and testing performance of the classifiers after feature selection with DE described in Section IV C 3) DE. From an accuracy perspective, SGD
performed better than BA and CS with this algorithm.

FIGURE 7. Training and testing performance of the classifiers after feature selection with FA described in Section IV C 4) FA. No classifier could obtain accuracy
and F1-score to 90% with this algorithm.

XGB has scored the same, 86%. The number of selected
features is 348.

6) GA
For GA, a crossover rate of 0.8 and a mutation rate of 0.05
are selected as the parameter values. 335 feature has been
selected through the GA. The maximum value of accuracy,
F1-score and cross-validation mean for GA with ML classi-
fiers is akin to DE. Among all other NI algorithms, GA has
performed better with SGD with an accuracy of 81% and F1-
score of 80%.

GA has achieved average testing accuracy of 82.92% and

an average F1-Score of 81.18% (figure 9). XGB achieved the
highest F1-Score of 92% compared to all other NI algorithms
and ML classifiers. Though in terms of cross-validation ac-
curacy, AdaB performs better in the experiment. The AdaB
classifier has achieved the maximum testing cross-validation
mean score of 86.28%.

7) GWO
The ideal threshold for GWO feature selection is 0.5 for
the experiments. The number of features chosen is 55. The
average training accuracy of all ML classifiers with this
algorithm is 86% which is the second-highest score. But like
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FIGURE 8. Training and testing performance of the classifiers after feature selection with FPA described in Section IV C 5) FPA. The testing accuracy value of
AdaB reached the 95th percentile line and the testing accuracy values of GradB and XGB were above the 95th percentile line.

FIGURE 9. Training and testing performance of the classifiers after feature selection with GA described in Section IV C 6) GA. Maximum testing accuracy has been
gained by XGB and maximum cross-validation means by AdaB.

most other algorithms AdaB could not achieve 100% training
accuracy and F1-score after selecting features by GWO. The
accuracy values of LR, SVM, SGD, and GNB are very close
to this technique.

The approach has the average testing accuracy with all ML
classifiers, at 79.63% and F1-Score at 77.90%. From figure
10, it can be noticed that GradB classifiers have achieved
the maximum accuracy of 89%. GradB also has the highest
testing F1-score of 88%. The maximum cross-validation
means has been achieved by AdaB with a value of 86%.

8) HHO

The HHO algorithm is one of the few algorithms that was
never used in the case of PD feature selection. For tuning,
the levy component of 1.5 has been fixed as the optimum
value for all the classifiers. HHO selected 78 features from
the PD dataset. After applying the eleven classifiers, HHO
came up with an average training accuracy of 85.1%. The
maximum value of accuracy, F1-score and cross-validation
mean for HHO with ML classifiers is matched with GA and
GWO.

HHO achieved an average testing accuracy of 79.79%
and an F1-Score of 78.27%. Amid all ML classifiers, GNB
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FIGURE 10. Training and testing performance of the classifiers after feature selection with GWO described in Section IV C 7) GWO. Unlike the others, the testing
accuracy of AdaB is below the 75th percentile. The performance of BNB is the lowest with GWO.

FIGURE 11. Training and testing performance of the classifiers after feature selection with GA described in Section IV C 8) HHO. The average performance of the
classifiers is good for this algorithm.

performed worst having an accuracy of 65%. Maximum
testing accuracy is achieved by GradB at 87.83%, maximum
F1-Score of 87%, and the maximum cross-validation mean
of 82.54% is achieved by both GradB and XGB are depicted
in figure 11

9) JA
For the experiments, the best threshold for JA feature selec-
tion was 0.5. A total of 281 characteristics were selected.
JA arouse with an average training accuracy of 85.64%, near
GWO. The maximum value of training accuracy, F1-score for
JA with ML classifiers is 100% similar to GWO and HHO.

Other than this, JA-AdaB, JA-KNN, and JA-RF methods
have produced an accuracy of 99%, 87%, 85% and F1-score
of 99%, 86%, and 84%, respectively.

Figure 12 outlined that with an average F1-Score of
78.45%, the technique has an average testing accuracy of
79.54% with all ML classifiers. GradB classifier has reached
a maximum accuracy of 91%. GradB also has the highest F1-
Score of 90% in testing. RF has achieved the highest cross-
validation mean with a value of 84%.
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FIGURE 12. Training and testing performance of the classifiers after feature selection with JA described in Section IV C 9) JA. JA boosted the performance of
GradB the most which enabled the accuracy of GraB to reach the 95th percentile.

FIGURE 13. Training and testing performance of the classifiers after feature selection with PSO described in Section IV C 10) PSO. GradB and XGB reached the
95th percentile line.

10) PSO

PSO is one of the well-established NI algorithms for feature
selection. For this algorithm, an inertia weight of 0.9 and an
acceleration factor of 2 and 3 were selected. This algorithm
carried out an average training accuracy of 85% with all
classifiers. PSO attained the highest training accuracy and
F1-score with DT, AdaB, GradB, and XGB valued at 100%
and the highest cross-validation mean of 87% with XGB.

The mean testing accuracy is 79.54%, and the F1-Score
is 77.54%. GradB and XGB have achieved the maximum
accuracy at 91%. Although, AdaB has the maximum cross-
validation mean of 82% (figure 13). The number of selected

features is 321.

11) SCA
The number of selected features for SCA was very low
through multiple experiments. Only 14 features were selected
using SCA. Surprisingly the average testing accuracy of SCA
is higher than its training accuracy valued at 84.27%. Unlike
most other NI algorithms, SCA does not have a training
accuracy of 100% with AdaB and GradB. SCA-DT and
SCA-XGB methods achieved the highest accuracy of 100%.
The maximum cross-validation means has been achieved by
GradB and XGB, 82%. But SVM had the lowest F1-score
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FIGURE 14. Training and testing performance of the classifiers after feature selection with SCA described in Section IV C 11) SCA. The average performance of
the classifiers is worst in accordance with this algorithm. No classifier has accuracy values in and above the 75th percentile.

value of 64% with this approach.
SCA achieved maximum testing accuracy of 85.71% and

85.19% for the GrarB and AdaB classifiers, respectively. The
method has achieved average testing accuracy of 77.58%
and an F1-Score of 75% after applying the eleven classifiers
(figure 14). The maximum cross-validation mean is attained
by KNN at 79% (figure 14).

12) SSA
The optimal threshold for SSA feature selection in the stud-
ies was 0.5. There were a total of 337 features chosen.
The maximum training accuracy of SSA is 100% which
is indistinguishable from BA, CS, DE, FA, FPA and PSO
regarding ML classifiers. Among all the NI algorithms, the
classification accuracy and F1-score of GNB are the least
with SSA valued at 52% and 54% respectively.

The approach has an average testing accuracy of 78.36%
and an average F1-Score of 76.181%. GradB classifier has
achieved a maximum accuracy of 92%. GradB and XGB also
have the highest F1-score in testing, with 91%. With a value
of 86%, RF has the highest cross-validation mean. These are
illustrated in figure 15.

13) WOA
The best WOA feature selection threshold was 0.5 in the ex-
periments and the constant beta equals 1.3. There were a total
of 181 traits chosen. The average training accuracy of WOA
is the highest of all NI algorithms valued at 86.62%. KNN
showed the best accuracy and F1-score of 90% after selecting
features with this algorithm among all NI algorithms.

The approach has a mean testing accuracy of 78.88%
among all ML classifiers, with an average F1-Score of
75.91%. GradB classifier has an 87.83% accuracy. GradB has
the highest F1-Score in testing, with a score of 87% (figure

16). With a rating of 97.8%, RF has the best cross-validation
mean.

D. PERFORMANCE COMPARISON AND DISCUSSION

F1-score and accuracy of different ML classifiers were com-
pared to assess the effectiveness of NI feature selection algo-
rithms. Because each ML algorithm was configured the same
throughout the experiments, only a few features were respon-
sible for different performance measures. Figure 18 represent
accuracy and figure 19 represent F1-Score of pairwise NI-
ML approaches. The x-axis is for the feature selection algo-
rithms, and the y-axis is for the ML classifiers. N/A in the x-
axis is the classification without any feature selection. Most
dimensionality reduction algorithms increase the accuracy
and F1-score compared to the plain ML approaches. Each
algorithm reduces the number of features, reducing the train-
test time. Comparing from the NI algorithms’ perspective
(column-wise in fig 18 and fig 19), FPA, GA and SSA
algorithms’ accuracy and f1-score are on par with or better
than other NI algorithms as well as without feature selection.
Again FPA and SSA algorithms are comparatively new in-
ventions, and their contribution towards feature selection in
recent literature is yet to be found. From the ML classification
perspective (row-wise), classifiers play the most important
roles in the difference in the result.

All three boosting algorithms (AdaB, GradB and XGB)
with RF perform better than all other classifiers. As shown
in figure 18 and figure 19, XGB outperformed most other
classifiers in the testing and training phases. As a result, in
Figure 17, testing performance for various NI algorithms’
results was compared. Another comparison can be found in
the 17, which depicts the RF classifier’s performance. As
delineated in figure 17, FPA, SSA, GA, DE, and GWO were
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FIGURE 15. Training and testing performance of the classifiers after feature selection with SSA described in Section IV C 12) SSA. The accuracy of GNB is the
least with PSO among all NI algorithms but GraB crossed the 95th percentile line, i.e., has an accuracy above 91%.

FIGURE 16. Training and testing performance of the classifiers after feature selection with WOA described in Section IV C 13) WOA. The performance of WOA is
average with the classifiers.

most prominent in terms of feature selection.

However, the performance of different algorithm pairs
needs to be addressed by some assessment criteria. Here, we
have ranked the performance of different methods based on
percentile. The methods are ranked as excellent, good and
moderate based on the percentile score shown in figure 20.
The 50th, 75th and 95th percentile have been appraised to ex-
press the value at a particular rank. The median of the data is
the 50th percentile. After calculating the percentile function,
the value of the 50th percentile was found at 0.785, i.e. 50%
of the accuracy values of different methods are above 78.5%.

Similarly, the accuracy values above the 75th percentile were
calculated at 0.867. Hence, NI-ML pairs’ testing accuracy
values which are greater than 0.867 are in the domain of
the 75th percentile. We have assessed the 95th percentile for
ranking our highest data points which are above 0.91 and 12
pairs of algorithms are found in this range. FPA-AdaB, DE-
GradB, GA-GradB, JA-GradB, PSO-GradB, DE-XGB, PSO-
XGB, SSA-XGB, FPA-GradB, SSA-GradB, GA-XGB, FPA-
XGB are the 12 pairs that are evaluated as best and ranked as
excellent. 25 NI-ML methods were found between 75th and
95th percentile, and 34 pairs between the 50th to 75th were
rated as excellent and moderate performance.
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FIGURE 17. Performance comparison of the 13 NI algorithms for feature selection each pairing with XGB and RF classifiers.

FIGURE 18. Accuracy comparison for thirteen NI algorithms and eleven ML classifiers. The horizontal axis presents the feature selection algorithms without feature
selection (N/A), and the vertical axis presents the classifiers used in this study. The colour bar represents the accuracy values with respect to colour intensities.
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FIGURE 19. F1-Score Comparison for thirteen NI algorithms and eleven ML classifiers.

In this study, a rather comprehensive comparison is done
with various nature-inspired feature reduction algorithms
with ML classifiers. Originally, the PD dataset contains a
huge number of features (754) which has been collected
from speech. Since the applied speech feature extraction is
independent of the classification problem, it is important to
select the necessary features and remove the unnecessary
ones which may cause false classification. From this per-
spective, the learning-based nature-inspired algorithm has
shown tremendous success in recent years for feature re-
duction/selection [41], [43]. Moreover, fewer features also
account for less training time for the ML classification. Al-
though there are many feature selection algorithms presented
in the literature for PD classification, a thorough comparison
to select the best ones, in another perspective best feature
selection and classification duo for PD is indeed a research
gap. This article addresses this issue by implementing and

experimenting with 13 feature selection algorithms ( BA,
CS, DE, FA, FPA, GA, GWO, HHO, JA, PSO, SCA, SSA,
WOA) with 11 ML classification algorithms (LR, DT, KNN,
RF, AdaB, GradB, XGB, SVM, SGD, GNB, BNB). These
algorithms are mostly chosen based on the recent literature
with some exceptions for some recent ones such as JA, FPA,
and SSA. From the experiments, the ensemble and boosting
styles algorithms perform significantly better than other ones
because of the heterogeneity of datasets features. These
algorithms allocate a subsection of features to individual
smaller ML models, make predictions and correct each of
them from previous errors. Such techniques benefit from
the large feature 18, the effect of feature selection is also
prominent. BA, DE, FPA, GA, PSO, and SSA algorithms
work mostly better than other feature selection algorithms.
Although there is not much common among them compared
to the ML classifiers, particular evolution heuristics might be
the case for ideal feature selection in PD classifications.
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FIGURE 20. Performance ranking among the 143 pairs of NI-ML method
based on percentile. Scores above the 50th, 75th and 95th percentile are
considered to have moderate, good and excellent performance respectively.

V. CONCLUSION
Datasets play an important role in solving classification prob-
lems, where reducing the high dimensionality of data is a
considerable challenge. This problem is addressed and solved
in a systematic comparison manner in the current study.
The dimensionality reduction of the PD dataset is carried
out effectively by selecting features employing 13 NI algo-
rithms. It is worth mentioning that five of the NI algorithms
employed in this study have not been studied previously
in PD detection, among which the reduction performance
of FPA, SSA and DE is off the mark. 11 ML classifiers,
including boosting algorithms, are used for classification
purposes. Each NI algorithm is compared with each of the 11
ML classifiers, distinctly keeping the same parameters. The
performance of these classifiers is analysed before and after
the feature selection approach with NI algorithms. Numerous
assessment criteria, namely confusion matrices (TP, TN, FP,
FN), accuracy, recall, precision, F1-score, fitness function,
and cross-validation mean score, are used to assess feature se-
lection and ML classification performance. The performance
of different methods and the 50th, 75th and 95th percentile
are used to rank. 12 pairs of NI-ML methods performed
excellently, which are assessed from the 95th percentile for
ranking the highest data points scored testing accuracy of
91% and above. Similarly, 34 and 25 pairs performed as
good and moderate defined from the 75th and 50th percentile,
which resulted in 86% and 79% accuracy, respectively. No
previous study has carried out this number of NI algorithms
and ML classifiers regarding PD classification. Moreover, 12
pairs of NI-ML are conveyed, with an accuracy of over 91%.
In conclusion, this study brings up some newly applied NI
algorithms for dimensionality reduction in PD detection and
also reveals the significant effect of boosting algorithms for
classification. Therefore, this will help interested researchers
to understand the significant role of NI algorithms in dimen-

sionality reduction, the performance of the five newly used
NI algorithms and boosting algorithms. Thus, this study will
play a pivotal role in the early diagnosis of PD.
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